Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

dopa/アサ属

リンクがクリップボードに保存されます
ページ 1 から 30 結果
We have recently demonstrated that levodopa acts centrally to induce antinociceptive action against colonic distension through dopamine D2 receptors in rats. Since serotonin (5-HT) and cannabinoid are involved in the regulation of visceral sensation, we hypothesized that they may

The CB1 cannabinoid receptor agonist, HU-210, reduces levodopa-induced rotations in 6-hydroxydopamine-lesioned rats.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Parkinson's disease is a chronic neurodegenerative disease of the extrapyramidal system associated with dopaminergic neuronal loss in the basal ganglia. However, several other neurotransmitters, such as serotonin, gamma-amino-butyric acid and glutamate, are also related to the symptoms of

Influence of chronic bromocriptine and levodopa administration on cerebral type 1 cannabinoid receptor binding.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
OBJECTIVE The endocannabinoid system is an important modulatory system in the brain. Complex interactions with brain dopaminergic circuits have been demonstrated. The aim of this study was to investigate the in vivo effect of the commonly used antiparkinsonian drugs, levodopa (L-DOPA) and
Drugs acting at cannabinoid type 1 receptors (CB1) have modulatory effects on glutamate and GABA neurotransmission in basal ganglia; thus, they potentially affect motor behavior in the parkinsonian setting. Preclinical trials with diverse cannabinoid agents have shown varied results, and the precise
Management of levodopa-induced dyskinesias (LID) is one of the main challenges in the treatment of Parkinson's disease patients. Mechanisms involved in the appearance of these involuntary movements are not well known but modifications in the activity of different neurotransmitter pathways seem to

Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson's disease.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Long-term treatment with levodopa in Parkinson's disease results in the development of motor fluctuations, including reduced duration of antiparkinsonian action and involuntary movements, i.e., levodopa-induced dyskinesia. Cannabinoid receptors are concentrated in the basal ganglia, and stimulation

Cannabinoids reduce levodopa-induced dyskinesia in Parkinson's disease: a pilot study.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The lateral segment of the globus pallidus (GPl) is thought to be overactive in levodopa-induced dyskinesia in PD. Stimulation of cannabinoid receptors in the GPl reduces gamma-aminobutyric acid (GABA) reuptake and enhances GABA transmission and may thus alleviate dyskinesia. In a randomized,
The present study was designed to determine the potential of CB1 cannabinoid receptor modulating compounds in the treatment of L-3,4-dihydroxyphenylalanine (L-dopa)-induced dyskinesia in Parkinson's disease. In the reserpine-treated rat model of parkinsonism, administration of a high dose of L-dopa
Endocannabinoids are neuromodulators acting on specific cannabinoid CB1 and CB2 G-protein-coupled receptors (GPCRs), representing potential therapeutic targets for neurodegenerative diseases. Cannabinoids also regulate the activity of GPR55, a recently "deorphanized" GPCR that
Cannabinoid type-1 receptors (CB₁Rs) modulate synaptic neurotransmission by participating in retrograde signaling in the adult brain. Increasing evidence suggests that cannabinoids through CB₁Rs play an important role in the regulation of motor activities in the striatum. In the present study, we

The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The long-term use of levodopa as a pharmacotherapy for Parkinson's disease is limited by the development of levodopa-induced dyskinesias. However, recent studies have suggested that pharmacological targeting of the endocannabinoid system may provide a viable adjunct to suppress these motor side

Cannabis in movement disorders.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Central cannabinoid receptors are densely located in the output nuclei of the basal ganglia (globus pallidus, substantia nigra pars reticulata), suggesting their involvement in the regulation of motor activity. Furthermore, there is evidence that endogenous cannabinoid transmission plays a role in

Expression of cannabinoid CB 1 R-GPR55 heteromers in neuronal subtypes of the Macaca fascicularis striatum

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The cannabinoid CB1 receptor (CB1 R) is the most abundant G protein-coupled receptor in the central nervous system, consistent with the important role of endocannabinoids as neuromodulators. Cannabinoids also modulate the function of G protein-coupled receptor 55 (GPR55), which

The influence of baseline marijuana use on treatment of cocaine dependence: application of an informative-priors bayesian approach.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
BACKGROUND Marijuana use is prevalent among patients with cocaine dependence and often non-exclusionary in clinical trials of potential cocaine medications. The dual-focus of this study was to (1) examine the moderating effect of baseline marijuana use on response to treatment with

The cannabinoid agonist WIN55212-2 decreases L-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Chronic Levodopa (L-DOPA), the gold standard therapy for Parkinson's disease (PD), causes disabling motor complications (dyskinesias) that are associated with changes in the activity of striatal protein kinase A (PKA) and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). In this study, we showed
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge