ページ 1 から 4700 結果
Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile
Macrophages have central roles in danger detection, inflammation and host defense, and consequently, these cells are intimately linked to most disease processes. Major advances in our understanding of the development and function of macrophages have recently come to light. For example, it is now
OBJECTIVE
Despite progress in developing many new anti-inflammatory treatments in the last decade, there has been little progress in finding treatments for bone loss associated with inflammatory diseases, such as rheumatoid arthritis and periodontitis. For instance, treatment of rheumatic diseases
Ribonuclease 1 (RNase1) is a circulating extracellular endonuclease that regulates the vascular homeostasis of extracellular RNA and acts as a vessel- and tissue-protective enzyme. Upon long-term inflammation, high amounts of proinflammatory cytokines affect endothelial cell (EC) function by
Inflammation plays important roles in the development of diabetic retinopathy (DR). How Müller cells contribute to DR-related inflammation remains unclear. We hypothesized that under diabetic conditions, elevated histone acetylations in Müller cells contribute to the inflammatory response. In this
OBJECTIVE
Persistent inflammation and impaired adipogenesis are frequent features of obesity and underlie the development of its complications. However, the factors behind adipose tissue dysfunction are not completely understood. Previously it was shown that histone demethylase KDM1A is required for
Acute liver failure (ALF) is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF) and sepsis; however, the
The type III histone deacetylase Sirt1 has recently emerged as a critical immune regulator by suppressing T cell immunity and macrophage activation during inflammation, but its role in dendritic cells (DCs) remains unknown. Here, we show that mice with genetic Sirt1 deletion specifically in DCs are
Macrophages contribute significantly to the pathology of many chronic inflammatory diseases, including rheumatoid arthritis (RA), asthma, and chronic obstructive pulmonary disease. Macrophage activation and survival are tightly regulated by reversible acetylation and deacetylation of histones,
A series of 2-methyl-1H-indol-3-ethylsulfamoylphenylacrylamides based on LBH589-PXD101 core have been synthesized and evaluated for their histone deacetylase (HDAC) inhibitory and anti-inflammatory activity. In vitro, compounds 9-12 show 2.6-fold better HDAC inhibition and 3-fold better IL-6
OBJECTIVE
Anti-citrullinated protein antibodies (ACPAs) are characteristic of rheumatoid arthritis (RA). However, their presence years before the onset of clinical RA is perplexing. Although multiple putative citrullinated antigens have been identified, no studies have demonstrated the specific
Non-selective histone deacetylase (HDAC) inhibitors are known to improve hypertension. Here, we investigated the therapeutic effect and regulatory mechanism of the class I HDAC selective inhibitors, MS-275 and RGFP966, in angiotensin (Ang) II-induced hypertensive Knowing that expression of metabotropic glutamate 2 (mGlu2) receptors in the dorsal root ganglia is regulated by acetylation mechanisms, we examined the effect of two selective and chemically unrelated histone deacetylase (HDAC) inhibitors,
OBJECTIVE
Cigarette smoke (CS)-induced inflammation is critical in chronic obstructive pulmonary disease (COPD). However, the role of acetylation at histone 3 lysine 9 (H3K9) in COPD inflammation remains unclear. The present study assessed the effect of acetylation of H3K9 on transcription both in
Clostridium difficile toxin A is known to cause deacetylation of tubulin proteins, which blocks microtubule formation and triggers barrier dysfunction in the gut. Based on our previous finding that the Clostridium difficile toxin A-dependent activation of histone deacetylase 6 (HDAC-6) is