Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

jasmonic acid/arabidopsis

リンクがクリップボードに保存されます
記事臨床試験特許
ページ 1 から 1073 結果

Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying

The glycosyltransferase UGT76E1 significantly contributes to 12-O-glucopyranosyl-jasmonic acid formation in wounded Arabidopsis thaliana leaves.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Jasmonoyl-isoleucine (JA-Ile) is a phytohormone that orchestrates plant defenses in response to wounding, feeding insects, or necrotrophic pathogens. JA-Ile metabolism has been studied intensively, but its catabolism as a potentially important mechanism for the regulation of JA-Ile-mediated

The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that
Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM,
Chitosan oligosaccharide (COS) is an effective plant immunity elicitor; however, its induction mechanism in plants is complex and needs further investigation. In this study, the Arabidopsis-Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000) interaction was used to investigate the
Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is
BACKGROUND Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a
We have used wound- and jasmonic acid (JA)-responsive genes as molecular markers to elucidate the pathway(s) of wound signal transduction in Arabidopsis thaliana. The JA-responsive (JR) genes JR1, JR2, and JR3 are strongly induced by wounding and by JA, while the wound-responsive (WR) genes WR3 and

The role of pectate lyase and the jasmonic acid defense response in Pseudomonas viridiflava virulence.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Pseudomonas viridiflava is a common pathogen of Arabidopsis thaliana in wild populations, yet very little is known about mechanisms of resistance and virulence in this interaction. We examined the induced defense response of A. thaliana to several strains of P. viridiflava collected from this host

Root and shoot jasmonic acid applications differentially affect leaf chemistry and herbivore growth.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Many induced responses in plants are systemic. Therefore, root-induced responses may alter leaf quality for shoot herbivores. Previously, we found that root and shoot application of jasmonic acid (JA) to feral Brassica oleracea both induced glucosinolates in the leaves. However, the types of

Development of marker genes for jasmonic acid signaling in shoots and roots of wheat.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The jasmonic acid (JA) signaling pathway plays key roles in a diverse array of plant development, reproduction, and responses to biotic and abiotic stresses. Most of our understanding of the JA signaling pathway derives from the dicot model plant Arabidopsis thaliana, while corresponding knowledge
Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous

Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Phloem cells adjacent to sieve elements can possess wall invaginations. The role of light and jasmonic acid signaling in wall ingrowth development was examined in pea companion cells (CCs), Arabidopsis thaliana phloem parenchyma cells (PCs), and in Senecio vulgaris (with ingrowths in both cell
Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known

Imaging of jasmonic acid binding sites in tissue.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Hormones regulate the mechanism of plant growth and development, senescence, and plants' adaptation to the environment; studies of the molecular mechanisms of plant hormone action are necessary for the understanding of these complex phenomena. However, there is no measurable signal for the hormone
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge