Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

laccase/シロイヌナズナ

リンクがクリップボードに保存されます
記事臨床試験特許
ページ 1 から 31 結果
Delignification is effective for improving the saccharification efficiency of lignocellulosic biomass materials. We previously identified that the expression of a fungal laccase (Lac) fused with a bacterial cellulose-binding module domain (CBD) improved the enzymatic saccharification efficiency of
Fungal laccases have been highlighted as a catalytic tool for transforming phenols. Here we demonstrate that fungal laccase-catalyzed oxidations can transform naturally occurring phenols into plant fertilizers with properties very similar to those of commercial humic acids. Treatments of Arabidopsis

Heterologous Expression and Characterization of a Laccase from Laccaria bicolor in Pichia pastoris and Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Laccases can oxidize a variety of phenolic and non-phenolic substrates including synthetic dyes. In this research, a laccase gene Lcc9 from Laccaria bicolor was chemically synthesized and optimized to heterogeneous expression in Pichia pastoris and Arabidopsis thaliana.

Heterologous expression and characterization of a laccase from Laccaria bicolor in Pichia pastoris and Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Laccases can oxidize a variety of phenolic and non-phenolic substrates including synthetic dyes. In this research, a laccase gene Lcc9 from Laccaria bicolor was chemically synthesized and optimized to heterogeneous expression in Pichia pastoris and Arabidopsis thaliana. The properties of recombinant

Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Completed genome sequences have made it clear that multicopper oxidases related to laccase are widely distributed as multigene families in higher plants. Laccase-like multicopper oxidase (LMCO) sequences culled from GenBank and the Arabidopsis thaliana genome, as well as those from several newly

The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s).

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
While laccases, multi-copper glycoprotein oxidases, are often able to catalyze oxidation of a broad range of substrates, such as phenols and amines in vitro, their precise physiological/biochemical roles in higher plants remain largely unclear, e.g., Arabidopsis thaliana contains 17 laccases with
Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and

SKS6, a multicopper oxidase-like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
SKU5-Similar 6 (SKS6) is a one of a large gene family of 19 members in Arabidopsis thaliana (L.) Heynh that encode multicopper oxidase-like proteins that are related to ferroxidases, ascorbate oxidases and laccases. Only one member of the family has been previously studied; Skewed5 (SKU5) is

Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Arabidopsis thaliana (L.) Heynh. genotypes limited in their ability to mount either octadecanoid-dependent induced resistance (IR(-)) or systemic acquired resistance (SAR(-)) were used to characterize the roles of these pathways in plant-herbivore interactions. Molecular and biochemical markers of

Susceptibility of intact germinating Arabidopsis thaliana to human fungal pathogens Cryptococcus neoformans and C. gattii.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The fungus Cryptococcus contributes a large global burden of infectious death in both HIV-infected and healthy individuals. As Cryptococcus is an opportunistic pathogen, much of the evolutionary pressure shaping virulence occurs in environments in contact with plants and soil. The present studies

Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Monolignol polymerization into lignin is catalyzed by peroxidases or laccases. Recently, a Zinnia elegans peroxidase (ZePrx) that is considered responsible for monolignol polymerization in this plant has been molecularly and functionally characterized. Nevertheless, Arabidopsis thaliana has become

Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Plant roots release a range of enzymes capable of degrading chemical compounds in their immediate vicinity. We present a system of phytoremediation ex planta based on the overexpression of one such enzyme, a secretory laccase. Laccases catalyze the oxidation of a broad range of phenolic compounds,

Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Peroxidases have been shown to be involved in the polymerization of lignin precursors, but it remains unclear whether laccases (EC 1.10.3.2) participate in constitutive lignification. We addressed this issue by studying laccase T-DNA insertion mutants in Arabidopsis thaliana. We identified two

Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17,
Catechyl lignin (C-lignin) is a linear homopolymer of caffeyl alcohol found in the seed coats of diverse plant species. Its properties make it a natural source of carbon fibers and high-value chemicals, but the mechanism of in planta polymerization of caffeyl alcohol remains unclear. In the
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge