Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

papillon-lefevre disease/ダイズ

リンクがクリップボードに保存されます
記事臨床試験特許
ページ 1 から 52 結果

Sequence and structure of a phenylalanine ammonia-lyase gene from Glycine max.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The gene encoding a key enzyme in anthocyanin biosynthesis, phenylalanine ammonia-lyase (PAL), was cloned from soybean (Glycine max). The purpose was to obtain a molecular probe to study the organization of this gene family in soybean and to examine novel regulatory mechanisms present in the

L-DOPA increases lignification associated with Glycine max root growth-inhibition.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
L-3,4-dihydroxyphenylalanine (L: -DOPA), an allelochemical exuded from the roots of velvet bean [Mucuna pruriens (L.) DC. var. utilis], presents a highly inhibitory action to plant growth. The effects of L-DOPA on phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7)
Copper oxide nanoparticles (CuONPs) are widely used in several products and their release into the environment can cause toxicity to major food crops. In this study, toxic responses as a result of CuONPs exposure were studied in soybean (Glycine max L.) seedlings. The plants were grown in 1/2
The levels of individual lipoxygenase isozymes in soybean [Glycine max (L.) Merr.] leaves were assessed during leaf development, after mechanical wounding, and in response to reproductive sink removal. Native isoelectric focusing followed by immunoblotting was employed to examine individual

Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Changes in soluble and cell wall bound peroxidase (POD, EC 1.11.1.7) activity, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity, and lignin content in roots of ferulic acid-stressed soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated.

Isoflavones profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with metabolic pathways.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The isoflavone diversity (44 varieties) of the soybean, Glycine max (L.) Merrill, from China, Japan, and Korea was examined by high-performance liquid chromatography. The profiles of 12 isoflavones identified from the grains were subjected to data-mining processes, including partial least-squares

[Rapid determination of fatty acids in soybeans [Glycine max (L.) Merr.] by FT-near-infrared reflectance spectroscopy].

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Current breeding programs dealing with fatty acid (FA) concentrations in soybean [Glycine max (L. ) Merr.] require large numbers for gas chromatographic analyses, thus it is important to develop a method for rapid determination of fatty acid by Near-Infrared Reflectance spectroscopy (NIRS) in

Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Changes of activity antioxidant enzymes and of levels of isoflavonoids were studied in the roots and hypocotyls of the etiolated soybean (Glycine max (L.) Merr. var. Essor) seedlings, submitted to cold. Prolonged exposure to 1 degrees C inhibited hypocotyl and root elongation and limited their

Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis
Five oligochitosans with increasing degrees of polymerization (DPs), i.e., from chitotriose to chitoheptaose, were examined to clarify the structure-bioactivity relationship between the DPs of oligochitosans and their effects on the isoflavone metabolites, total phenolic and flavonoid contents (TPC
The aim of the present study was to analyze induced expression of defense-related proteins in the soybean plants by rhizobacterial stain Carnobacterium sp. SJ-5 upon challenge inoculation with Fusarium oxysporum. Determination of the enzymatic activity of the different defense-related enzymes,

Purification and Developmental Analysis of the Major Anionic Peroxidase from the Seed Coat of Glycine max.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
We show that the majority of peroxidase activity in soybean (Glycine max var Williams 82) seeds is localized to the seed coat. A single isozyme is responsible for this activity and has been purified to electrophoretic homogeneity by successive chromatography on DEAE Sepharose Fast Flow, concanavalin

Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max).

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The allelopathic effect of caffeic acid was tested on root growth, phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities, hydrogen peroxide (H(2)O(2)) accumulation, lignin content and monomeric composition of soybean (Glycine max) roots. We found that exogenously applied caffeic acid

Discrimination of Cultivated Regions of Soybeans (Glycine max) Based on Multivariate Data Analysis of Volatile Metabolite Profiles.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Soybean (Glycine max) is a major crop cultivated in various regions and consumed globally. The formation of volatile compounds in soybeans is influenced by the cultivar as well as environmental factors, such as the climate and soil in the cultivation areas. This study used gas
Charcoal rot disease, caused by the fungus Macrophomina phaseolina, leads to significant yield losses of soybean crops. One strategy to control charcoal rot is the use of antagonistic, root-colonizing bacteria. Rhizobacteria A(5)F and FPT(7)21 and Pseudomonas sp. strain GRP(3) were characterized for
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge