Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pectic polysaccharide/シロイヌナズナ

リンクがクリップボードに保存されます
記事臨床試験特許
ページ 1 から 39 結果

In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Pectic polysaccharides are a complex set of macromolecules of the primary cell wall matrix with distinct structural domains. The biosynthesis, organisation and function of these domains within cell wall matrices are poorly understood. An immersion immunofluorescence labelling technique was developed
The quartet (qrt) mutants of Arabidopsis thaliana produce tetrad pollen in which microspores fail to separate during pollen development. Because the amount of callose deposition between microspores is correlated with tetrad pollen formation in other species, and because pectin is implicated as

The Three Members of the Arabidopsis thaliana Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin
Plant cell wall polysaccharides are amongst the most complex, heterogeneous and abundant bio-molecules on earth. This makes the biosynthetic enzymes, namely the glycosyltransferases and polysaccharide synthases, important research targets in plant science and biotechnology. As an initial step to
The viability of Arabidopsis thaliana (strain Landsberg) roots exposed to a low pH (4.5 or 4.7) solution that contained 100 microM CaCl(2) was examined by staining with fluorescein diacetate-propidium iodide. The elongation zone of growing roots lost viability within 1-2 h following exposure to low
Mutation in the Arabidopsis thaliana QUASIMODO 1 gene (QUA1), which encodes a putative glycosyltransferase, reduces cell wall pectin content and cell adhesion. Suspension-cultured calli were generated from roots of wild-type (wt) and qua1-1 A. thaliana plants. The altered cell adhesion phenotype of

Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis (PACE).

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Plant cell wall polysaccharides vary in quantity and structure between different organs and during development. However, quantitative analysis of individual polysaccharides remains challenging, and relatively little is known about any such variation in polysaccharides in organs of the model plant

l-Galactose replaces l-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the l-fucose-deficient mur1 Arabidopsis mutant.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Arabidopsis thaliana mur1 is a dwarf mutant with altered cell-wall properties, in which l-fucose is partially replaced by l-galactose in the xyloglucan and glycoproteins. We found that the mur1 mutation also affects the primary structure of the pectic polysaccharide rhamnogalacturonan II (RG-II). In

Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The cell-wall polysaccharides of Arabidopsis thaliana leaves have been isolated, purified, and characterized. The primary cell walls of all higher plants that have been studied contain cellulose, the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II, the

Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Galacturonosyltransferase 1 (GAUT1) is an alpha1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15

Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides

ABA signalling modulates the detection of the LM6 arabinan cell wall epitope at the surface of Arabidopsis thaliana seedling root apices.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
• The hormonal and physiological regulations underpinning the cell contexts of structural features of the heterogeneous cell wall pectic polysaccharide rhamnogalacturonan-I are far from being understood. • The effect of the modulation of abscisic acid (ABA) concentrations and sensitivity on the
Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D
Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas

Characterization of a putative 3-deoxy-D-manno-2-octulosonic acid (Kdo) transferase gene from Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The structures of the pectic polysaccharide rhamnogalacturonan II (RG-II) pectin constituent are remarkably evolutionary conserved in all plant species. At least 12 different glycosyl residues are present in RG-II. Among them is the seldom eight-carbon sugar 3-deoxy-d-manno-octulosonic acid (Kdo)
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge