ページ 1 から 31 結果
Partially purified, cell-free extracts from nodules of cowpea (Vigna unguiculata L. Walp. cv. Caloona) and soybean (Glycine max L. Merr. cv. Bragg) showed high rates of de novo purine nucleotide and purine base synthesis. Activity increased with rates of nitrogen fixation and ureide export during
During the period examined from 12 to 63 days after planting, the ureides, allantoin and allantoic acid, were the predominant nitrogenous solutes in the xylem exudate of soybeans (Glycine max [L.]) growing solely on symbiotically fixed nitrogen, accounting for approximately 60% and greater than 95%
N2-fixing root nodules of soybean (Glycine max L. Merr.) convert atmospheric N2 to ammonia(um) in an energy-intensive enzymatic reaction. These nodules synthesize large quantities of purines because nitrogen fixed by bacteria contained within this tissue is transferred to the shoots in the form of
Soybean (Glycine max) and mothbean (Vigna aconitifolia) cDNA clones encoding glutamine phosphoribosylpyrophosphate amidotransferase (PRAT), the first enzyme of the de novo purine biosynthesis pathway, have been isolated from nodule cDNA libraries. The amino acid sequence deduced from soybean clone
The ureides, allantoin and allantoic acid, are the major nitrogenous substances transported within the xylem of N(2)-fixing soybeans (Glycine max L. Merr. cv Amsoy 71). The ureides accumulated in the cotyledons, roots and shoots of soybean seedlings inoculated with Rhizobium or grown in the presence
The appearance of enzymes involved in the formation of ureides, allantoin, and allantoic acid, from inosine 5'-monophosphate was analyzed in developing root nodules of soybean (Glycine max). Concomitant with development of effective nodules, a substantial increase in specific activities of the
Isolated soybean (Glycine max L. cv. Kent) embyronic axes metabolized [(14)C]glycine to ATP within the 1 hour of imbibition. Radioactivity was not detected in GTP until the 3rd hour. Throughout most of the first 24 hours of germination about 10 to 26 times as much label from [(14)C]glycine appears
Mapping genes in biochemical pathways allow study of the genomic organization of pathways and geneic relationships within these pathways. Additionally, molecular markers located within the boundaries of a specific gene sequence represent important marker assisted selection resources. We report map
Several ureides are intermediates of purine base catabolism, releasing nitrogen from the purine nucleotides for reassimilation into amino acids. In some legumes like soybean (Glycine max), ureides are used for nodule-to-shoot translocation of fixed nitrogen. Four enzymes of Arabidopsis (Arabidopsis
Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete
Soybean (Glycine max) and pea (Pisum sativum) differ in the transport of fixed nitrogen from nodules to shoots. The dominant nitrogen transport compounds for soybean are ureides, while amides dominate in pea. A possible enzymic basis for this difference was examined.The level of enzymes involved in
Aspartate transcarbamylase (ATCase) activity declines in etiolated cowpea (Vigna unguiculata L. Walp.) and soybean (Glycine max L. Merr.) hypocotyls between 3 and 11 days after planting. Treating cow-pea hypocotyls with cycloheximide (CH), actinomycin D (AMD), 6-methyl purine (6-MP), or cordycepin
BACKGROUND
Common bean (Phaseolus vulgaris L.) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. This suggests that the GeneChip(R) Soybean Genome Array (soybean GeneChip) may be used for gene expression studies using common
The pleiotropic phenotype of an auxotrophic purL mutant (SVQ295) of Sinorhizobium fredii HH103 has been investigated. SVQ295 forms colonies that are translucent, produce more slime and absorb less Congo red than those of wild-type strain HH103. SVQ295 did not grow in minimal medium unless the
A heterogeneous population of cDNAs (designated Vupur3) encoding phosphoribosylglycinamide formyltransferase (GART; EC 2.1.2.2) was isolated from a cowpea (Vigna unguiculata L. Walp.) nodule library. Three classes of cDNA with the same ORF, but differing in their 3'-UTRs, were identified. Southern