Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pyrroline/タバコ属

リンクがクリップボードに保存されます
記事臨床試験特許
9 結果

Elevated Accumulation of Proline in NaCl-Adapted Tobacco Cells Is Not Due to Altered Delta-Pyrroline-5-Carboxylate Reductase.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Tobacco (Nicotiana tabacum L. var Wisconsin 38) cells that are adapted to 428 millimolar NaCl accumulate proline mainly due to increased synthesis from glutamate. These cells were used to evaluate the possible role of Delta(1)-pyrroline-5-carboxylate reductase in the regulation of proline
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline

Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has
The Delta(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned) is the rate-limiting enzyme in proline (Pro) biosynthesis in plants and is subject to feedback inhibition by Pro. It has been suggested that the feedback regulation of P5CS is lost in plants under stress conditions. We compared

N-caffeoyl-4-amino-n-butyric acid, a new flower-specific metabolite in cultured tobacco cells and tobacco plants.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
PUT cells were selected from the XD line of cultured tobacco cells (Nicotiana tabacum L. cv. Xanthi-nc) for the ability to utilize putrescine as sole nitrogen source. Previous work had indicated that hydroxycinnamoylputrescines (principally caffeoylputrescine) and 4-amino-n-butyric acid (GABA) are

[Evaluation of Salt Tolerance of Transgenic Tobacco Plants Bearing with P5CS1 Gene of Arabidopsis thaliana].

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Arabidopsis thaliana delta1-pyrroline-5-carhoxylate synthase 1 gene (P5CS1) cDNA was cloned under the control of the potent constitutive 35S RNA promoter of the cauliflower mosaic virus and transferred into genome of tobacco cv. Petit Havana SR-1 (Nicotiana tabacum L.) plants. It is shown that the
Proline accumulation is responsible for stress adaptation in many plants. To distinguish the involvement of two proline synthetic pathways, the virus induced gene silencing (VIGS) system that silenced the expression of genes encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC:1.5.1.12) and
To obtain insight into the link between proline (Pro) accumulation and the increase in osmotolerance in higher plants, we investigated the biochemical basis for the NaCl tolerance of a Nicotiana plumbaginifolia mutant (RNa) that accumulates Pro. Pro biosynthesis and catabolism were investigated in
γ-Amino butyric acid (GABA) and proline play a crucial role in protecting plants during various environmental stresses. Their synthesis is from the common precursor glutamic acid, which is catalyzed by glutamate decarboxylase and Δ(1) -pyrroline-5-carboxylate synthetase respectively. However, the
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge