Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

vitis vinifera/デトックス

リンクがクリップボードに保存されます
記事臨床試験特許
ページ 1 から 17 結果

ABA Alleviates Uptake and Accumulation of Zinc in Grapevine (Vitis vinifera L.) by Inducing Expression of ZIP and Detoxification-Related Genes.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Abscisic acid (ABA) is a plant hormone that can mitigate heavy metal toxicity. Exogenous ABA and ABA mimic 1 (AM1) were applied to study the influence on Zn uptake and accumulation in Vitis vinifera L. cv. Merlot seedlings exposed to excess Zn. The seedlings were treated with either normal or
Eutypine, 4-hydroxybenzaldehyde, and 3-phenyllactic acid are some of the phytotoxins produced by the pathogens causing Eutypa dieback and esca disease, two trunk diseases of grapevine (Vitis vinifera). Known biocontrol agents such as Fusarium lateritium and Trichoderma sp. were screened for their

Antioxidative responses in Vitis vinifera infected by grapevine fanleaf virus.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The antioxidative response of grapevine leaves (Vitis vinifera cv. Trebbiano) affected by the presence of grapevine fanleaf virus was studied during the summer of 2010 at three different harvest times (July 1st and 26th, and August 30th). At the first and second harvest, infected leaves showed
Reactive oxygen species (ROS) have been repeatedly implicated as cellular second messengers important in the modulation of almost every ontogenic phase of plant development, from seedling to cell death. In all of these processes, ROS production and detoxification are highly regulated and its levels

VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera).

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to (i) search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, (ii) compare grapevine metabolic networks with other publicly
When Sauvignon blanc or Gros Manseng grape must was percolated through an immobilized gamma-glutamyltranspeptidase column, there was a significant increase in the concentration of S-3-(hexan-1-ol)-L-cysteine, the precursor of 3-mercaptohexan-1-ol, a compound that contributes to the varietal aroma of
Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by

Wine modifies the effects of alcohol on immune cells of mice.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Ethanol may be detrimental to immune cells due to the generation of free radicals during detoxification. If this is true, then alcoholic beverages that contain antioxidants, like red wine, should be protective against immune cell damage. We investigated this by giving mice either a red muscadine

Functional Leaf Traits and Diurnal Dynamics of Photosynthetic Parameters Predict the Behavior of Grapevine Varieties Towards Ozone.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
A comparative study on functional leaf treats and the diurnal dynamics of photosynthetic processes was conducted on 2-year-old potted plants of two grape (Vitis vinifera L.) varieties (Aleatico, ALE, and Trebbiano giallo, TRE), exposed under controlled conditions to realistic concentrations of the

Analysis of grape ESTs: global gene expression patterns in leaf and berry.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Analysis of 2479 ESTs from Vitis vinifera berry tissue and 2438 from leaf revealed that 1% of the ESTs match to known Vitis proteins, 72% to plant proteins, 11% to non-plant, and 16% had no match (P[N]>0.5). The levels of redundancy were similar in the leaf and berry libraries. Only 12% of the genes

Cloning and characterization of small non-coding RNAs from grape.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Small non-coding RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are effectors of regulatory pathways underlying plant development, metabolism, and responses to biotic and abiotic stresses. To address the nature and functions of these regulators in grapevine (Vitis vinifera

Purification and characterization of a NADPH-dependent aldehyde reductase from mung bean that detoxifies eutypine, a toxin from eutypa lata1

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzaldehyde) is a toxin produced by Eutypa lata, the causal agent of eutypa dieback in the grapevine (Vitis vinifera). Eutypine is enzymatically converted by numerous plant tissues into eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl
γ-glutamyl transferases/transpeptidases (E.C. 2.3.2.2, GGTs) are involved in the catabolism of many compounds that are conjugated to glutathione (GSH), which have a variety of roles. GSH can act as storage and transport vehicle for reduced sulfur; it is involved in the detoxification of xenobiotics
The biosynthesis of S-(3-hexan-1-ol)-glutathione (3MH-S-glut) and S-(3-hexan-l-ol)-L-cysteine (3MH-S-cys), which act as flavour precursors in wines, in Vitis vinifera grapes exposed to various environmental stress conditions is reported here. Ultraviolet (UV-C) irradiation, water deficit, and
Glutamate dehydrogenase (GDH) may be a stress-responsive enzyme, as GDH exhibits considerable thermal stability, and de novo synthesis of the alpha-GDH subunit is induced by exogenous ammonium and senescence. NaCl treatment induces reactive oxygen species (ROS), intracellular ammonia, expression of
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge