Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Neurologica Belgica 2005-Sep

A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Alim-Louis Benabid
Bradley Wallace
John Mitrofanis
Rong Xia
Brigitte Piallat
Stephan Chabardes
François Berger

키워드

요약

High-frequency stimulation (HFS) of neural structures has been used since 1997 as an alternative to lesions in functional neurosurgery of movement disorders, and more recently, it has been applied to the treatment of epilepsies, obsessive-compulsive disorders, cluster headaches, and has other applications in experimental models, particularly for obesity. Although their clinical efficacy is not questioned, and that the effects most of the time parallel those of ablative techniques, leading to the concept of functional inhibition, the intimate mechanisms by which HFS induces excitation within fiber bundles and seems to inhibit cellular nuclei is still strongly debated. Principally due to the observation of long-term clinical effects over a period up to 15 years, it is clear that the mechanism is not due to a progressive lesion, as at every moment the interruption of stimulation reverses totally the effects. There is no current proof that long-term HFS is able to reset neural networks, or to induce profound modifications of the functional organization or of the synaptic connectivity. To understand what is responsible for the immediate, reversible and adaptable effects of HFS, several mechanisms must be considered, which might be involved simultaneously or in sequence: i) Jamming of neural transmission through stimulated nuclei is one possibility, based on the principle that the regular imposed activity might drive the neurons to fire in a regular pattern, making it impossible to transmit more subtle messages, either normal or abnormal. Although it is difficult to prove this type of mechanism, it might account for the reports of increased activity following HFS in various structures. ii) Direct inhibition of spike initiation at the level of the membrane could be due to activation of inhibitory terminals, particularly gaba-ergic, or by a blockade of the voltage gated ion channels. iii) Recent data show that HFS decreases the production and release of low molecular weight proteic neurotransmitters, which could account for the functional inhibition while the efferent axon is still excited by the electrical stimulus. iv) Retrograde activation of upstream neuronal structures, as reported in the external pallidum during stimulation of STN, might be responsible of additional jamming-like effects due to collisions with descending spikes.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge