Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2016-Dec

A quantitative proteomic approach to highlight Phragmites sp. adaptation mechanisms to chemical stress induced by a textile dyeing pollutant.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
R A Ferreira
C Roma-Rodrigues
L C Davies
I Sá-Correia
S Martins-Dias

키워드

요약

Phragmites sp. is present worldwide in treatment wetlands though the mechanisms involved in the phytoremediation remain unclear. In this study a quantitative proteomic approach was used to study the prompt response and adaptation of Phragmites to the textile dyeing pollutant, Acid Orange 7 (AO7). Previously, it was demonstrated that AO7 could be successfully removed from wastewater and mineralized in a constructed wetland planted with Phragmites sp. This azo dye is readily taken up by roots and transported to the plant aerial part by the xylem. Phragmites leaf samples were collected from a pilot scale vertical flow constructed wetland after 0.25, 3.25 and 24.25h exposure to AO7 (400mgL-1) immediately after a watering cycle used as control. Leaf soluble protein extraction yielded an average of 1560 proteins in a broad pI range (pH3-10) by two-dimensional gel electrophoresis. A time course comparative analysis of leaf proteome revealed that 40 proteins had a differential abundance compared to control (p<0.05) within a 3.25h period. After 24.25h in contact with AO7, leaf proteome was similar to control. Adaptation to AO7 involved proteins related with cellular signalling (calreticulin, Ras-related protein Rab11D and 20S proteasome), energy production and conversion (adenosine triphosphate synthase beta subunit) carbohydrate transport and metabolism (phosphoglucose isomerase, fructose-bisphosphate aldolase, monodehydroascorbate reductase, frutockinase-1 and Hypothetical protein POPTR_0003s12000g and the Uncharacterized protein LOC100272772) and photosynthesis (sedoheptulose-1,7-bisphosphatase and ferredoxin-NADP+ reductase). Therefore, the quantitative proteomic approach used in this work indicates that mechanisms associated with stress cell signalling, energy production, carbohydrate transport and metabolism as well as proteins related with photosynthesis are key players in the initial chemical stress response in the phytoremediation process of AO7.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge