Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Hazardous Materials 2009-May

A review of the fate of potassium in the soil-plant system after land application of wastewaters.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
M Arienzo
E W Christen
W Quayle
A Kumar

키워드

요약

Irrigation with wastewaters from agri-industry processes such as milk factories, piggeries, wineries and abattoirs is commonplace. These wastewaters all have high levels of potassium (K). Potassium concentration in effluents from domestic wastewater sources are relatively low, reported to vary between 10 and 30 mg L(-1). Higher levels of potassium are reported for effluents from olive oil mills, 10,000-20,000 mg KL(-1), wool scouring, 4200-13,000 mg KL(-1), cheese and lactic whey and potato processing, approximately 1800 mg KL(-1), piggery effluent, 500-1000 mg KL(-1) and winery wastewaters, up to 1000 mg KL(-1). Application of wastewaters with these high potassium levels has been found to increase the overall level of soil fertility, with the exception of alkaline effluents which can dissolve soil organic carbon. Long-term application of such wastewater may cause the build-up of soil potassium and decrease the hydraulic conductivity of the receiving soils. These potential impacts are uncertain and have been inadequately researched. Regulatory limits for potassium in drinking water have been set only by the European Union with no toxicological or physiological justification. The literature shows that grasses and legume herbages accumulate high levels of potassium, up to 5% dry weight, and some grasses, such as turfgrass are particularly tolerant to high levels of potassium, even under saline conditions. This adaptation is considered useful for increasing potassium immobilization and sustainable practices of land wastewater disposal. Potassium availability is significantly affected by the cation ratios of the wastewater, the existing soil water solution and of soil exchange sites.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge