Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemistry 1997-Jan

An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: kinetics of transfer in wild-type and mutant complexes.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
E K Wilson
L Huang
M J Sutcliffe
F S Mathews
R Hille
N S Scrutton

키워드

요약

In wild-type trimethylamine dehydrogenase, tyrosine-442 is located at the center of a concave region on the surface of the enzyme that is proposed to form the docking site for the physiological redox acceptor, electron transferring flavoprotein. The intrinsic rate constant for electron transfer in the reoxidation of one-electron dithionite-reduced wild-type trimethylamine dehydrogenase (modified with phenylhydrazine) by electron transferring flavoprotein was investigated by stopped-flow spectroscopy. Analysis of the temperature dependence of the reaction rate by electron transfer theory yielded values for the reorganizational energy of 1.4 eV and the electronic coupling matrix element of 0.82 cm-1. The role played by residue Tyr-442 in facilitating reduction of ETF by TMADH was investigated by isolating three mutant forms of the enzyme in which Tyr-442 was exchanged for a phenylalanine, leucine, or glycine residue. Rates of electron transfer from these mutants of TMADH to ETF were investigated by stopped-flow spectroscopy. At 25 degrees C, modest reductions in rate were observed for the Y442F (1.4-fold) and Y442L (2.2-fold) mutant complexes, but a substantial decrease in rate (30.5-fold) and an elevated dissociation constant for the complex were seen for the Y442G mutant enzyme. Inspection of the crystal structure of wild-type TMADH reveals that Tyr-442 is positioned along one side of a small cavity on the surface of the enzyme: Val 344, located at the bottom of this cavity, is the closest surface residue to the 4Fe-4S center of TMADH and is likely to be positioned on a major electron transfer pathway to ETF. The reduced electron transfer rates in the mutant complexes are probably brought about by decreases in electronic coupling between the electron transfer donor and acceptor within the complex, either directly or indirectly due to unfavorable change in the orientation of the two proteins with respect to one another.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge