Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2002-Sep

Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ramesh B Nair
Qun Xia
Cyril J Kartha
Eugen Kurylo
Rozina N Hirji
Raju Datla
Gopalan Selvaraj

키워드

요약

The general phenylpropanoid pathways generate a wide array of aromatic secondary metabolites that range from monolignols, which are ubiquitous in all plants, to sinapine, which is confined to crucifer seeds. The biosynthesis of these compounds involves hydroxylated and methoxylated cinnamyl acid, aldehyde, or alcohol intermediates. Of the three enzymes originally proposed to hydroxylate the 4-, 3-, and 5-positions of the aromatic ring, cinnamate 4-hydroxylase (C4H), which converts trans-cinnamic acid to p-coumaric acid, is the best characterized and is also the archetypal plant P450 monooxygenase. Ferulic acid 5-hydroxylase (F5H), a P450 that catalyzes 5-hydroxylation, has also been studied, but the presumptive 3-hydroxylase converting p-coumarate to caffeate has been elusive. We have found that Arabidopsis CYP98A3, also a P450, could hydroxylate p-coumaric acid to caffeic acid in vivo when expressed in yeast (Saccharomyces cerevisiae) cells, albeit very slowly. CYP98A3 transcript was found in Arabidopsis stem and silique, resembling both C4H and F5H in this respect. CYP98A3 showed further resemblance to C4H in being highly active in root, but differed from F5H in this regard. In transgenic Arabidopsis, the promoters of CYP98A3 and C4H showed wound inducibility and a comparable developmental regulation throughout the life cycle, except in seeds, where the CYP98A3 promoter construct was inactive while remaining active in silique walls. Within stem and root tissue, the gene product and the promoter activity of CYP98A3 were most abundant in lignifying cells. Collectively, these studies show involvement of CYP98A3 in the general phenylpropanoid metabolism, and suggest a downstream function for CYP98A3 relative to the broader and upstream role of C4H.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge