Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Leukocyte Biology 2001-Aug

Augmented TNF-alpha and IL-10 production by primed human monocytes following interaction with oxidatively modified autologous erythrocytes.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
A M Liese
M Q Siddiqi
J H Siegel
T Denny
Z Spolarics

키워드

요약

The presence of dysfunctional/damaged red blood cells (RBCs) has been associated with adverse clinical effects during the inflammatory response. The aim of this study was to elucidate whether oxidatively modified, autologous RBCs modulate monocyte cytokine responses in humans. Monocyte tumor necrosis factor alpha (TNF-alpha) and IL-10 production was measured in whole blood from healthy volunteers using ELISA and flow cytometry. Oxidatively modified RBCs (15 mM phenylhydrazine, 1 h, OX-RBC) or vehicle-treated RBCs (VT-RBC) opsonized by autologous serum were administered alone or in combination with one of three priming agents: E. coli lipopolysaccharide (LPS, 0.2 ng/ml), zymosan A (1 mg/ml), or phorbol 12-myristate 13-acetate (PMA, 50 ng/ml). OX-RBC or VT-RBC alone did not result in the release of TNF-alpha or IL-10. LPS, zymosan, and PMA caused marked and dose-dependent increases in TNF-alpha and IL-10 production. Addition of OX-RBC augmented the LPS-, zymosan-, and PMA-induced TNF-alpha release by approximately 100%. OX-RBC augmented LPS- and zymosan-induced IL-10 release by 400-600%. Flow cytometry analyses showed that monocytes were responsible for TNF-alpha and IL-10 production in whole blood. The presence of OX-RBC alone increased the complexity of CD14+ monocytes but caused no cytokine production. LPS alone induced cytokine production without altering cell complexity. After the combined (OX-RBC+LPS) treatment, monocytes of high complexity were responsible for TNF-alpha production. The presence of mannose or galactose (at 10-50 mM) did not alter the observed augmentation of cytokine production by OX-RBC, suggesting that lectin receptors are not involved in the response. These studies indicate that the interaction between damaged autologous erythrocytes and monocytes has a major impact on the cytokine responses in humans. An augmented cytokine production by the mononuclear phagocyte system may adversely affect the clinical course of injury and infections especially in genetic or acquired RBC diseases or after transfusions.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge