Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2015-Dec

Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Min Chen
Ling-Lei Zhang
Jia Li
Xiao-Jia He
Jun-Chi Cai

키워드

요약

A hydroponic study was conducted to investigate the lead bioaccumulation and tolerance characteristics of Ceratophyllum demersum L. exposed to various lead concentrations (5-80 μM) for 7, 14 or 21 days. Lead accumulation increased with increasing concentrations of metal in the solution, to a maximum accumulation of 4016.4 mg kg(-1) dw. Unexpectedly, the release of accumulated lead from the plants into solution was observed for all experimental groups except those exposed to 5 μM. Both the biomass and protein content of the plants responded significantly to lead stress. Malondialdehyde (MDA) levels increased substantially at lead concentrations below 20 μM, further indicating that this metal is toxic to the plants. To reveal the mechanism underlying the defense against lead stress, plants were also assayed for the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as other relevant enzymes such as phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). The activities of both SOD and CAT increased at lower lead concentrations and with shorter exposure times, followed by a decline, but the activities of POD and its isoenzymes continued to increase under all conditions. Moreover, increases in the activities of PAL and PPO were observed only for the 14-day treatment, and these two enzymes were not sensitive to lead concentration. These results suggest that C. demersum exhibits strong tolerance within a specific concentration range of lead in solution; according to regression analysis, 40 μM is suggested to be this plant's tolerance threshold for lead in water. Furthermore, the malfunction of this tolerance mechanism might accelerate the metal-release process. These attributes are likely to be beneficial for utilizing C. demersum in phytoremediation applications.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge