Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cryobiology 2000-Aug

Bioenergetic targeting during organ preservation: (31)P magnetic resonance spectroscopy investigations into the use of fructose to sustain hepatic ATP turnover during cold hypoxia in porcine livers.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
K K Changani
B J Fuller
J D Bell
S Taylor-Robinson
B R Davidson

키워드

요약

During liver preservation, ATP supplies become depleted, leading to loss of cellular homeostatic controls and a cascade of ensuing harmful changes. Anaerobic glycolysis is unable to prolong ATP production for a significant period because of metabolic blockade. Our aim was to promote glycolysis during liver cold hypoxia by supplying fructose as an additional substrate, compared to supplementation with an equivalent concentration of glucose. Porcine livers (two groups; n = 5 in each) were retrieved by clinical harvesting techniques and subjected to two cycles of cold hypoxia and oxygenated hypothermic reperfusion. In the second cycle of reperfusion, the perfusate was supplemented with either 10 mmol/L glucose (Group 1) or 10 mmol/L fructose (Group 2). During reperfusion in both groups, similar levels of ATP were detected by phosphorus magnetic resonance spectroscopy ((31)P MRS). However, during subsequent hypoxia, ATP was detected for much longer periods in the fructose-perfused group. The rate of ATP loss was sevenfold slower during hypoxia in the presence of fructose than in the presence of glucose (ATP consumption of -7.2 x 10(-3)% total (31)P for Group 1 versus -1.0 x 10(-3)% total (31)P for Group 2; P < 0. 001). The changes in ATP were mirrored by differences in other MRS-detectable intermediates; e.g., inorganic phosphate was significantly higher during subsequent hypoxia in Group 1 (45.7 +/- 2.7% total (31)P) than in Group 2 (33.7 +/- 1.1% total (31)P; P < 0. 01). High-resolution MRS of liver tissue extracts demonstrated that fructose was metabolized mainly via fructose 1-phosphate. We conclude that fructose supplied by brief hypothermic perfusion may improve the bioenergetic status of cold hypoxic livers by sustaining anaerobic glycolysis via a point of entry into the pathway that is different from that for glucose.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge