Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis

Biological activity of piceatannol: leaving the shadow of resveratrol.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Hanna Piotrowska
Malgorzata Kucinska
Marek Murias

키워드

요약

Resveratrol (3,4',5-trans-trihydroxystilbene), a naturally occurring stilbene, is considered to have a number of beneficial effects, including anticancer, anti-aethrogenic, anti-oxidative, anti-inflammatory, anti-microbial and estrogenic activity. Piceatannol (3, 3', 4, 5'-trans-trihydroxystilbene), a naturally occurring hydroxylated analogue of resveratrol, is less studied than resveratrol but displays a wide spectrum of biological activity. Piceatannol has been found in various plants, including grapes, passion fruit, white tea, and Japanese knotweed. Besides antioxidative effects, piceatannol exhibits potential anticancer properties as suggested by its ability to suppress proliferation of a wide variety of tumor cells, including leukemia, lymphoma; cancers of the breast, prostate, colon and melanoma. The growth-inhibitory and proapoptotic effects of piceatannol are mediated through cell-cycle arrest; upregulation of Bid, Bax. Bik, Bok, Fas: P21(WAF1) down-regulation of Bcl-xL; BCL-2, clAP, activation of caspases (-3, -7,- 8, -9), loss of mitochondrial potential, and release of cytochrome c. Piceatannol has been shown to suppress the activation of some transcription factors, including NF-kappaB, which plays a central role as a transcriptional regulator in response to cellular stress caused by free radicals, ultraviolet irradiation, cytokines, or microbial antigens. Piceatannol also inhibits JAK-1, which is a key member of the STAT pathway that is crucial in controlling cellular activities in response to extracellular cytokines and is a COX-2-inducible enzyme involved in inflammation and carcinogenesis. Although piceatannol has been shown to induce apoptosis in cancer cells, there are examples of its anti-apoptotic pro-proliferative activity. Piceatannol inhibits Syk kinase, which plays a crucial role in the coordination of immune recognition receptors and orchestrates multiple downstream signaling pathways in various hematopoietic cells. Piceatannol also binds estrogen receptors and stimulates growth of estrogen-dependent cancer cells. Piceatannol is rapidly metabolized in the liver and is converted mainly to a glucuronide conjugate; however, sulfation is also possible, based on in vitro studies. The pharmacological properties of piceatannol, especially its antitumor, antioxidant, and anti-inflammatory activities, suggests that piceatannol might be a potentially useful nutritional and pharmacological biomolecule; however, more data are needed on its bioavailability and toxicity in humans.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge