Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2019-05

CYP79D73 Participates in Biosynthesis of Floral Scent Compound 2-Phenylethanol in Plumeria rubra.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Savitha Dhandapani
Jingjing Jin
Vishweshwaran Sridhar
Nam-Hai Chua
In-Cheol Jang

키워드

요약

Plumeria (Plumeria rubra), well known for its brightly colored and fragrant flowers, emits a number of floral volatile organic compounds (VOCs). Plumeria flowers emit a total of 43 VOCs including nine phenylpropanoids/benzenoids, such as 2-phenylethanol (2PE), benzaldehyde, 2-phenylacetaldehyde (PAld), (E/Z)-phenylacetaldoxime (PAOx), benzyl nitrile (BN), and 2-phenylnitroethane (PN). To identify genes and pathways involved in the production of the major compound 2PE, we analyzed the plumeria floral transcriptome and found a highly expressed, flower-specific gene encoding a cytochrome P450 family 79D protein (PrCYP79D73), which catalyzed the formation of (E/Z)-PAOx. Feeding experiments with deuterated phenylalanine or deuterated (E/Z)-PAOx showed that (E/Z)-PAOx is an intermediate in the biosynthesis of 2PE, as are two nitrogen-containing volatiles, BN and PN, in plumeria flowers. Crude enzyme extracts from plumeria flowers converted l-phenylalanine to (E/Z)-PAOx, PAld, 2PE, BN, and PN. The biosynthesis of these compounds increased with addition of PrCYP79D73-enriched microsomes but was blocked by pretreatment with 4-phenylimidazole, an inhibitor of cytochrome P450 enzymes. Moreover, overexpression of PrCYP79D73 in Nicotiana benthamiana resulted in the emission of (E/Z)-PAOx as well as PAld, 2PE, BN, and PN, all of which were also found among plumeria floral VOCs. Taken together, our results demonstrate that PrCYP79D73 is a crucial player in the biosynthesis of the major floral VOC 2PE and other nitrogen-containing volatiles. These volatiles may be required for plant defense as well as to attract pollinators for the successful reproduction of plumeria.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge