Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2010-Oct

Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Meng Luo
Xia Liu
Yuangang Zu
Yujie Fu
Su Zhang
Liping Yao
Thomas Efferth

키워드

요약

Cajanol (5-hydroxy-3-(4-hydroxy-2-methoxyphenyl)-7-methoxychroman-4-one) is an isoflavanone from Pigeonpea [Cajanus cajan (L.) Millsp.] roots. As the most effective phytoalexin in pigeonpea, the cytotoxic activity of cajanol towards cancer cells has not been report as yet. In the present study, the anticancer activity of cajanol towards MCF-7 human breast cancer cells was investigated. In order to explore the underlying mechanism of cell growth inhibition of cajanol, cell cycle distribution, DNA fragmentation assay and morphological assessment of nuclear change, ROS generation, mitochondrial membrane potential (DeltaPsim) disruption, and expression of caspase-3 and caspase-9, Bax, Bcl-2, PARP and cytochrome c were measured in MCF-7 cells. Cajanol inhibited the growth of MCF-7 cells in a time and dose-dependent manner. The IC(50) value was 54.05 microM after 72 h treatment, 58.32 microM after 48 h; and 83.42 microM after 24h. Cajanol arrested the cell cycle in the G2/M phase and induced apoptosis via a ROS-mediated mitochondria-dependent pathway. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade, and active-caspase-3 was involved in PARP cleavage. All of these signal transduction pathways are involved in initiating apoptosis. To the best of our knowledge, this is the first report demonstrating the cytotoxic activity of cajanol towards cancer cells in vitro.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge