Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant signaling & behavior 2010-Sep

Catechin is a phytototoxin and a pro-oxidant secreted from the roots of Centaurea stoebe.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Shail Kaushik
Harsh P Bais
Meredith L Biedrzycki
Lakshmannan Venkatachalam

키워드

요약

When applied to the roots of Arabidopsis thaliana, the phytotoxin (±)-catechin triggers a wave of reactive oxygen species (ROS), leading to a cascade of genome-wide changes in gene expression and, ultimately, death of the root system. Biochemical links describing the root secreted phytotoxin, (±)-catechin, represent one of most well studied systems to describe biochemically based negative plant-plant interactions, but of late have also sparked controversies on phytotoxicity and pro-oxidant behavior of (±)-catechin. The studies originating from two labs ( 1- 3) maintained that (±)-catechin is not at all phytotoxic but has strong antioxidant activity. The step-wise experiments performed and the highly correlative results reported in the present study clearly indicate that (±)-catechin indeed is phytotoxic against A. thaliana and Festuca idahoensis. Our results show that catechin dissolved in both organic and aqueous phase inflict phytotoxic activity against both A. thaliana and F. idahoensis. We show that the deviation in results highlighted by the two labs ( 1- 3) could be due to different media conditions and a group effect in catechin treated seedlings. We also determined the presence of catechin in the growth medium of C. stoebe to support the previous studies. One of the largest functional categories observed for catechin-responsive genes corresponded to gene families known to participate in cell death and oxidative stress. Our results showed that (±)-catechin treatment to A. thaliana plants resulted in activation of signature cell death genes such as accelerated cell death (acd2) and constitutively activated cell death 1 (cad1). Further, we confirmed our earlier observation of (±)-catechin induced ROS mediated phytotoxicity in A. thaliana. We also provide evidence that (±)-catechin induced ROS could be aggravated in the presence of divalent transition metals. These observations have significant impact on our understanding regarding catechin phytotoxicity and pro-oxidant activity. Our data also illustrates that precise conditions are needed to evaluate the effect of catechin phytotoxicity.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge