Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genetics and Molecular Research 2014-Feb

Cloning and expression analysis of a stress-induced GmIMT1 gene in soybean (Glycine max).

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
H T Wang
N Guo
J M Zhao
A Karthikeyan
D Xue
C C Xue
J Y Xu
Z H Xu
J Y Gai
H Xing

키워드

요약

Here, we aimed to clone and identify the GmIMT1 gene related to the salt stress response in soybean. The full-length cDNA sequence of the GmIMT1 gene was amplified in soybean using degenerate primers of Mesembrythmum crystallium. To understand the stress response, the GmIMT1 gene was cloned and sequenced. Then, the expression vectors of the gene were constructed, and introduced into the model plant Arabidopsis thaliana through Agrobacterium mediated transformation, and the salt tolerance was analyzed in the transgenic plants. In addition, the expression patterns of GmIMT1 gene in soybean were analyzed. The expression was examined in different organs (roots, leaves, flower seeds, and stem) and under different stress conditions (drought, high salt, low temperature, salicylic acid, ethane, abscisic acid, and methyl jasmonate) by real-time fluorescent quantitative polymerase chain reaction analysis. The results showed that the root, leaves, and stems exhibited high level of GmIMT1 gene expression, whereas there was no expression in the seeds. In addition, the GmIMT1 gene expression was upregulated under all stress conditions. Overall, the results clearly indicate that GmIMT1 might be involved in multiple plant response pathways to the different environmental conditions. Furthermore transgenic plants exhibited higher salt-tolerance compared to wild type plants.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge