Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Neuroscience 2012-Jun

Computational molecular phenotyping of retinal sheet transplants to rats with retinal degeneration.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
M J Seiler
B W Jones
R B Aramant
P B Yang
H S Keirstead
R E Marc

키워드

요약

Retinal progenitor sheet transplants have been shown to extend neuronal processes into a degenerating host retina and to restore visual responses in the brain. The aim of this study was to identify cells involved in transplant signals to retinal degenerate hosts using computational molecular phenotyping (CMP). S334ter line 3 rats received fetal retinal sheet transplants at the age of 24-40 days. Donor tissues were incubated with slow-releasing microspheres containing brain-derived neurotrophic factor or glial cell-derived neurotrophic factor. Up to 265 days after surgery, eyes of selected rats were vibratome-sectioned through the transplant area (some slices stained for donor marker human placental alkaline phosphatase), dehydrated and embedded in Eponate, sectioned into serial ultrathin datasets and probed for rhodopsin, cone opsin, CRALBP (cellular retinaldehyde binding protein), l-glutamate, l-glutamine, glutathione, glycine, taurine, γ-aminobutyric acid (GABA) and DAPI (4',6-diamidino-2-phenylindole). In large transplant areas, photoreceptor outer segments in contact with host retinal pigment epithelium revealed rod and cone opsin immunoreactivity whereas no such staining was found in the degenerate host retina. Transplant photoreceptor layers contained high taurine levels. Glutamate levels in the transplants were higher than in the host retina whereas GABA levels were similar. The transplant inner nuclear layer showed some loss of neurons, but amacrine cells and horizontal cells were not reduced. In many areas, glial hypertrophy between the host and transplant was absent and host and transplant neuropil appeared to intermingle. CMP data indicate that horizontal cells and both glycinergic and GABAergic amacrine cells are involved in a novel circuit between transplant and host, generating alternative signal pathways between transplant and degenerating host retina.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge