Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2016-Nov

Cytotoxic effects of kazinol A derived from Broussonetia papyrifera on human bladder cancer cells, T24 and T24R2.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Soojong Park
Ahmad Fudhaili
Sang-Seok Oh
Ki Won Lee
Hamadi Madhi
Dong-Hee Kim
Jiyun Yoo
Hyung Won Ryu
Ki-Hun Park
Kwang Dong Kim

키워드

요약

BACKGROUND

Broussonetia papyrifera (B. papyrifera), also known as paper mulberry, has been used as a traditional medicine for the treatment of several diseases, including ophthalmic disorders and impotency. However, the biological activity of kazinol A (1) among flavonols isolated from B. papyrifera has not been identified.

OBJECTIVE

We identified a candidate metabolite for anti-human bladder cancer treatment from B. papyrifera and investigated the possible molecular mechanisms underlying its cytotoxic effects in T24 and cisplatin-resistant T24R2 human bladder cancer cells.

METHODS

T24 and T24R2 cells were treated with five flavonols from B. papyrifera and their cytotoxic effects were determined using MTT assay, cell cycle analysis, mitochondrial membrane potential, and propidium iodide staining. Autophagy rate was calculated by counting LC3-GFP dots in the cells. All related protein expressions were analyzed by immunoblotting.

RESULTS

Compound 1 showed relatively higher cytotoxicity in the human bladder cancer cells, T24 and T24R2, rather than other tissues-originated cancer cells. Compound 1 significantly attenuated cell growth through G0/1 arrest mediated by a decrease in cyclin D1 and an increase of p21. Apoptosis and autophagy induced by compound 1 treatment was accompanied by a modulation of the AKT-BAD pathway and AMPK-mTOR pathway, respectively.

CONCLUSIONS

Our results suggest that compound 1 induces cytotoxic effects in human bladder cancer cells, including the cisplatin-resistant T24R2. Compound 1 may be a candidate for the development of effective anti-cancer drug on human urinary bladder cancer.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge