Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2009-Feb

Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Mathias R Zimmermann
Hubert H Felle

키워드

요약

Using non-invasive ion-selective microprobes, that were placed in substomatal cavities, long-distance signalling has been investigated in intact Hordeum vulgare and Vicia faba seedlings. Heat (flame), applied to one leaf (S-leaf), triggers apoplastic ion activity (pH, pCa, pCl) transients in a distant leaf (T-leaf), all largely independent of simultaneously occurring action potential-like voltage changes. While apoplastic pCa and pH increase (Ca(2+)-, H(+)-activities decrease), pCl decreases (Cl(-)-activity increases). As the signal transfer from the S- to the T-leaf is too fast to account for mass flow, the heat-induced pressure change is primarily responsible for changes in voltage (H(+) pump deactivation) as well as for the ion fluxes. The pCa transient precedes the pCl- and pH responses, but not the voltage change. Since the apoplastic pCl decrease (Cl(-) increase) occurs after the pCa increase (Ca(2+) decrease) and after the depolarization, we argue that the Cl(-) efflux is a consequence of the Ca(2+) response, but has no part in the depolarization. Kinetic analysis reveals that pH- and pCl changes are interrelated, indicated by the action of the anion channel antagonist NPPB, which inhibits both pCl- and pH changes. It is suggested that efflux of organic anions into the apoplast causes the pH increase rather than the deactivation of the plasma membrane H(+) pump. Since there is considerably more information in ion activity changes than in a single action- or variation potential and heat-induced ion fluxes occur more reliably than voltage changes, released by milder stimuli, they are considered systemic signalling components superior to voltage.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge