Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2000-Jan

Disturbance in the allocation of carbohydrates to regenerative organs in transgenic Nicotiana tabacum L.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
E V Sheveleva
R G Jensen
H J Bohnert

키워드

요약

Transgenic tobacco (Nicotiana tabacum L, cv. SR-1) expressing mannitol 1-phosphate dehydrogenase, MTLD, in chloroplasts and myo-inositol O-methyltransferase, IMT1, in the cytosol after crossing of lines which expressed these foreign genes separately has been analysed. Plants expressing both enzymes accumulated mannitol and D-ononitol in amounts comparable to those following single gene transfer and showed phenotypically normal growth during the vegetative stage. Induction of flowering for transgenovar and wild-type occurred at the same time, but during flowering the phenotype of the transformed plants changed. Compared to wild-type, transgenic plants were characterized by curled, smaller upper leaves and elongated stems during flowering; incomplete development of flower buds with shorter sepals and pedicels resulted in increased abortion. Flowers completing development were normal. The vegetative biomass of the transformed plants was slightly higher than that of wild-type. Concentrations of soluble sugars and potassium were lower than in wild-type only in the apical parts of the transgenic plants. Both enzymes, under control of the CaMV 35S promoter, promoted accumulation of mannitol and D-ononitol in the youngest leaves close to the vegetative meristem and in flowers, suggesting that their presence could signal lower sink demand leading to a decrease in carbon import to flowers and developing seed capsules. The interpretation here is that increases of inert carbohydrates in developing sinks interfere with metabolism, such as respiration or glycolysis. This interference may be less significant in source tissues during vegetative growth than in sink tissues during seed development.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge