Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2015-Dec

Ecophysiological constraints of Aster tripolium under extreme thermal events impacts: Merging biophysical, biochemical and genetic insights.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
B Duarte
J W Goessling
J C Marques
I Caçador

키워드

요약

Cold and heat waves are phenomenon that occurs in higher frequency and intensity due to global climate changes. Commonly cultivated crop species are crucially affected by extreme weather events, and therefore alternative crops - such as halophytes - gain in agricultural interest. While halophytes are potentially able to cope with temperature extremes on the long term exposure, effects of temporary events such as cold and heat waves are not yet described. In order to unveil the effects of these altered thermal environments, Aster tripolium plants were subjected to cold (9/5 °C) and heat (42/38 °C) waves regimes during 3 days and its photochemical and biochemical traits evaluated. In the potential cash crop A. tripolium cold waves induced the gene expression of dehydrins in order to counteract desiccation and thus to prevent oxidative stress. Regulatory proteins on the RNA maturation level (Maturase K) were highly expressed. Heat stress induced the gene expression of the cystein protease gene; most likely to degrade misfolded proteins temporary. Both thermal treatments decreased the photosynthetic efficiency and capacity, driven by a loss in the connectivity between PSII antennae. Nevertheless the light absorption capacity was unaffected due to an increased RC closure net rate. Cold wave-treated individuals showed a decrease in the carotenoid pigmentation, except auroxanthin. In cold wave treated individuals the overall peroxidase activity was significantly increased. Data suggest that exposure to both, cold and heat wave treatment decreased the ecophysiological capacity of A. tripolium.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge