Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2004-Mar

Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Małgorzata Garnczarska
Waldemar Bednarski

키워드

요약

To investigate whether re-aeration after a short-term hypoxic pre-treatment (for 2, 12 or 24 h) induces oxidative stress, the temporal sequence of physiological reactions, including the level of free radicals, hydrogen peroxide production, and changes in antioxidative enzymes, was characterized in roots of hydroponically grown lupine (Lupinus luteus L., cv. Juno) seedlings. By using electron paramagnetic resonance (EPR), we found that the exposure of hypoxically grown roots (hypoxic pre-treatment for 12 and 24 h) to air caused an increase in the level of free radicals. The amount of hydrogen peroxide also tended to increase when hypoxically pre-treated roots were re-aerated, which attests to a higher production of reactive oxygen species. Re-aeration caused a higher activity of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6), whereas the activity of peroxidase (POX, EC 1.11.1.7) was only slightly influenced. The roots were less tolerant to longer hypoxic pre-treatments, with a significant decrease in viability, associated with death of root tips immediately after hypoxic stress. Roots exposed to hypoxia for 2 h showed less pronounced responses and their viability was not affected by hypoxic stress and re-aeration. These results indicate that re-aeration following short-term hypoxia imposes a mild oxidative stress. This led us to conclude that re-oxygenation stress per se was not the key factor for cell death in root tips.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge