Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 1995-Mar

Effect of lopping on water potential, transpiration, regrowth, (14)C-photosynthate distribution and biomass production in Alnus glutinosa.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
K A Singh
F B Thompson

키워드

요약

The effects of light, moderate and heavy branch pruning or lopping treatments (resulting in removal of 28-31, 56-60 and 80-82% of the foliage, respectively, unlopped control = 0%) were studied in 3-year-old black alder (Alnus glutinosa L. Gaertn.) plants. Within 24 h of lopping, transpiration rates decreased and water potentials increased. The effects of lopping continued for 48 days. The improved water status of the lopped plants enhanced water-use efficiency during the first 30 days. Regrowth was related to a combination of enhanced net assimilation rates during the first 30 days after lopping, use of current photoassimilates and stored carbohydrates in the roots (particularly in medium and heavily lopped plants) for the production of new leaf area, and delayed leaf senescence. The lightly and moderately lopped plants developed 62 and 57% more leaf area, respectively, than the unlopped plants, but total leaf area development was slower in the heavily lopped plants. Lightly lopped plants produced total biomass equivalent to that of unlopped plants, but the moderately and heavily lopped plants produced less biomass than the unlopped plants. During the first 30 days after lopping, there was a net loss of nodule dry matter and recovery to control values did not occur during the period of study. Immediately (24 h) after lopping, more (14)C-photosynthate was translocated to the roots of lopped plants than to the roots of unlopped plants. When a branch near the base of the main stem was fed (14)CO(2), (14)C-photosynthate translocation to the shoot increased with increasing intensity of lopping, at 50 days after lopping.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge