Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Circulation 2001-Jul

Enhanced generation of reactive oxygen species in the limb skeletal muscles from a murine infarct model of heart failure.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
H Tsutsui
T Ide
S Hayashidani
N Suematsu
T Shiomi
J Wen
Nakamura Ki
K Ichikawa
H Utsumi
A Takeshita

키워드

요약

BACKGROUND

The generation of reactive oxygen species (ROS) is enhanced in the failing myocardium. We hypothesized that ROS were also increased in the limb skeletal muscles in heart failure. Methods and Results-- Myocardial infarction (MI) was created in mice by ligating the left coronary artery. After 4 weeks, the left ventricle was dilated and contractility was diminished by echocardiography. Left ventricular end-diastolic pressure was elevated after MI in association with an increase in lung weight/body weight and the presence of pleural effusion. The generation of ROS in the limb muscles, including the soleus and gastrocnemius muscles, which were excised after MI, was measured by electron spin resonance spectroscopy with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (hydroxy-TEMPO). Overall, generation was increased, but it was attenuated in the presence of dimethylthiourea or 4,5-dihydroxy-1,2-benzenedisulfonic disodium salt in the reaction mixture, indicating increased generation of hydroxyl radicals originating from superoxide anion. Thiobarbituric acid-reactive substance formation was also increased in muscles after MI. Mitochondrial complex I and III activities were both decreased after MI, which may have caused the functional uncoupling of the respiratory chain and ROS production. Antioxidant enzyme activities, including superoxide dismutase, catalase, and glutathione peroxidase, were comparable between groups.

CONCLUSIONS

Skeletal muscle in post-MI heart failure expressed an increased amount of ROS in association with ROS-mediated lipid peroxidation. This supports the hypothesis that oxidative stress may cause (at least in part) skeletal muscle dysfunction in heart failure.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge