Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2014-May

First Report of Bacterial Soft Rot of Konnyaku Caused by Dickeya dadantii in China.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
J-F Wei
J-H Wei

키워드

요약

Konnyaku (Amorphophallus rivieri Durieu) is grown in some rural areas of China as an important cash crop. In 2011, there was a serious outbreak of Konnyaku soft rot in Xuanwei District of Yunnan Province of China. The disease was characterized by partial or complete tuber rot. At its anaphase, the soft rot may move up the stem, causing the caudex to decay and the whole plant to collapse. If the stem is strong or big enough, the soft rot may develop on one side of the stem, leaving the other side healthy for several days. In this case, the stem does not collapse, and etiolation may be observed on the rotten tissue. In serious cases, up to 80% of the plants were infected. The disease is even more serious if Konnyaku is grown continuously in the same field for more than one year. At its worst, the disease can wipe out the whole crop. In 2012 and 2013, we isolated 46 strains of bacteria from 60 Konnyaku tuber samples with soft rot symptoms from Xuanwei District. All strains grew on CVP medium, and produced iridescent, cross-hatched translucent colonies in deep, cuplike depressions or pits. All strains were facultatively anaerobic, gram-negative, straight rod-shaped cells with peritrichous flagella. All strains were catalase-positive, but oxidase-negative. They were able to ferment glucose, reduce nitrate, produce β-galactosidase and H2S, and they utilized L-arabinose, D-galactose, D-glucose, glycerol, D-mannose, D-ribose, and sucrose, but did not produce urease, or acid from adonitol. Pectobacterium carotovorum subsp. carotovorum (syn. Erwina carotovora subsp. carotovora) has been commonly accepted as the causal agent of Konnyaku soft rot in Japan and China (1,3). Our studies also confirmed that P. carotovorum subsp. carotovorum caused Konnyaku soft rot, but the colony morphology and physiological and biochemical characteristics of these bacteria differed greatly from those of P. carotovorum subsp. carotovorum and other pectolytic Pectobacterium species. They grew at 37°C, caused potato soft rot, produced acid from melibiose, citrate, raffinose, and lactose, but did not produce acid from sorbitol and arabitol. The strain also utilized malonate but not keto-methyl glucoside as the sole carbon source. All strains were positive for phosphatase. Forty-one of 46 strains were sensitive to erythromycin. Thirty-seven of 46 strains produced indole. All tests were conducted with P. carotovorum subsp. carotovorum standard strain C2 isolated from Chinese cabbage as a positive control. Healthy Konnyaku tubers were inoculated with suspensions of the strains with a concentration of 108 CFU/ml in sterile water to confirm pathogenicity. After ~48 h, tuber rot symptoms were observed on all inoculated Konnyaku tubers. In comparison, there were no symptoms on tubers inoculated with sterile water. The bacterium was re-isolated from the infected Konnyaku tubers and identified as Dickeya dadantii, in accordance with Koch's postulates. All strains were confirmed by using the species-specific primers ERWFOR/CHRREV (2), which amplified a 450-bp DNA fragment by PCR assay. To our knowledge, this is the first report of Konnyaku soft rot caused by D. dadantii in China. References: (1) N. Hayashi. Gunma J. Agric. Res. A (Genera1) 5:25, 1988. (2) E. J. Smid et al. Plant Pathol. 44:1058, 1995. (3) J. Y. Tang et al. J. Yunnan Agric. Univ. 16:185, 2001.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge