Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protoplasma 2015-Jul

He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Li-Mei Gao
Yong-Feng Li
Rong Han

키워드

요약

In this paper, we explored the protective effect and physiochemical mechanism of He-Ne laser preillumination in enhancement of tall fescue seedlings tolerance to high salt stress. The results showed that salt stress greatly reduced plant growth, plant height, biomass, leaf development, ascorbate acid (AsA) and glutathione (GSH) concentration, the enzymatic activities, and gene expression levels of antioxidant enzymes such as catalase (CAT) and glutathione reductase (GR) and enhanced hydrogen peroxide (H2O2) content, superoxide radical (O2 (·-)) generation rates, membrane lipid peroxidation, relative electrolyte leakage, the enzymatic activities, and gene expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), compared with controls. However, He-Ne laser preillumination significantly reversed plant growth retardation, biomass loss, and leaves development decay induced by salt stress. And the values of the physiochemical parameters observed in salt-stressed plants were partially reverted or further increased by He-Ne laser. Salt stress had no obvious effect on the transcriptional activity of phytochromeB, whereas He-Ne laser markedly enhanced its transcriptional level. Preillumination with white fluorescent lamps (W), red light (RL) of the same wavelength, or RL, then far-red light (FRL) had not alleviated the inhibitory effect of salt stress on plant growth and antioxidant enzymes activities, suggesting that the effect of He-Ne laser on improved salt tolerance was most likely attributed to the induction of phytochromeB transcription activities by the laser preillumination, but not RL, FRL or other light sources. In addition, we also utilized sodium nitroprusside (SNP) as NO donor to pre-treat tall fescue seedlings at the same conditions, and further evaluated the differences of physiological effects between He-Ne laser and NO in increasing salt resistance of tall fescue. Taken together, our data illustrated that He-Ne laser preillumination contributed to conferring an increased tolerance to salt stress in tall fescue seedlings due to alleviating oxidative damage through scavenging free radicals and inducing transcriptional activities of some genes involved in plant antioxidant system, and the induction of phytochromeB transcriptional level by He-Ne laser was probably correlated with these processes. Moreover, this positive physiochemical effect seemed more effective with He-Ne laser than NO molecule.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge