Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience Research 1993-Aug

Hypercapnia and hypoxia which develop during retching participate in the transition from retching to expulsion in dogs.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
H Fukuda
T Koga

키워드

요약

The roles of arterial and central chemoreceptors in the transition from retching to expulsion during vomiting were studied. In spontaneously breathing decerebrate dogs, actual vomiting induced by activation of abdominal vagal afferents always consisted of retching and subsequent expulsion phases. Pulmonary ventilation almost stopped during the retching phase. Arterial blood CO2 tension gradually increased and reached a maximum near the time of the transition from the retching phase to the expulsion phase. Similarly, when end-tidal CO2 was maintained higher than 4.6 +/- 0.7% in paralyzed, artificially ventilated decerebrate dogs, stimulation of abdominal vagal afferents induced fictive retching and fictive expulsion, which were identified from the characteristic discharge patterns of the motor nerves to the costal and hiatal parts of the diaphragm, the abdominal muscles and the digastric muscle. However, only fictive retching occurred at an end-tidal CO2 of less than 3.7 +/- 0.7%. Although end-tidal CO2 was at a low level, fictive retching was followed by fictive expulsion when artificial ventilation was interrupted during the fictive retching phase and when sinus nerve afferents were stimulated. Even after sino-aortic denervation, fictive retching and subsequent fictive expulsion could be induced by stimulation of either vagal afferents or the solitary tract and nucleus, but the threshold level of end-tidal CO2 which enabled the induction of fictive expulsion increased after denervation. These results indicate that the activity of arterial and/or central chemoreceptor afferents must exceed some critical level to induce the transition from the retching phase to the expulsion phase.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge