Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Teratogenesis, carcinogenesis, and mutagenesis 1986

Hyperthermia as a teratogen: a review of experimental studies and their clinical significance.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
M J Edwards

키워드

요약

Although hyperthermia is teratogenic in birds, all the common laboratory animals, farm animals, and primates and satisfies defined criteria as a teratogen, its study as a human teratogen has been neglected. Homeothermic animals, including humans, can experience body temperature elevations induced by febrile infections, heavy exercise and hot environments which exceed the thresholds (1.5-2.5 degrees C elevation) which are known to cause a syndrome of embryonic resorptions, abortions, and malformations in experimental animals. Hyperthermia is particularly damaging to the central nervous system, and if a threshold exposure occurs at the appropriate stages of embryonic development, exencephaly, anencephaly, encephalocoele, micrencephaly, microphthalmia, neurogenic talipes, and arthrogryposis can be produced in a high proportion of exposed embryos, the incidence and type of defect depending on the species and strain within species, the stage of development, and the severity of hyperthermic exposure. Other defects which can be induced experimentally include exomphalos, hypoplasia of toes and teeth, renal agenesis, vertebral anomalies, maxillary hypoplasia, facial clefting, cataract, coloboma, and heart and vascular defects. Proliferating cells are particularly sensitive to temperature elevations, resulting in arrest of mitotic activity and immediate death of cells in mitosis with threshold elevations (1.5-2.5 degrees C) and delayed death of cells probably in S phase with higher elevations (3.5 degrees C). In general, lower temperature elevations (2.5 degrees C) require longer durations of elevation to cause defects than a simple spike at a higher elevation (4.5 degrees C). The death of cells is largely confined to the brain and in the day 21 guinea pig embryo to the alar regions of the brain. Cell death probably accounts for most of the defects in the central nervous system, but microvascular disturbances leading to leakage, oedema and haemorrhage, placental necrosis, and infarction are other known effects of hyperthermia; and these are probably involved in the pathogenesis of many defects of the heart, limbs, kidneys, and body wall. Recent experiments have demonstrated protection of rat embryos in culture against a known teratogenic exposure by a brief nonteratogenic exposure given at least 15 min earlier. This protection is associated with the synthesis of heat-shock proteins, and temporary arrest of the cell proliferative cycle. Hyperthermia appears to be capable of causing congenital defects in all species and may act alone or synergistically with other agents.(ABSTRACT TRUNCATED AT 400 WORDS)

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge