Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2007-May

Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
A K Srivastava
P Venkatachalam
K G Raghothama
S V Sahi

키워드

요약

Heavy metal contamination of soils is of widespread occurrence as a result of human, agricultural and industrial activities. Among heavy metals, lead is a potential pollutant that readily accumulates in soils and sediments. Although lead is not an essential element for plants, it gets easily absorbed and accumulated in Sesbania drummondii, which exhibits a significant level of tolerance to lead. The response of a metal tolerant plant to heavy metal stress involves a number of biochemical and physiological pathways. To investigate the overall molecular response of a metal-tolerant plant to lead exposure, suppression subtractive hybridization (SSH) was used to construct a cDNA library enriched in lead induced mRNA transcripts from lead-tolerant Sesbania. Screening the library by reverse Northern analysis revealed that between 20 and 25% of clones selected from the library were differentially regulated in lead treated plants. After differential screening, we isolated several differentially expressed cDNA clones, including a type 2 metallothionein (MT) gene which is involved in detoxification and homeostasis and shown to be differentially regulated in lead treated plants. The data from the reverse Northern analysis was further confirmed with conventional Northern analysis of a select group of genes including MT, ACC synthase/oxidase, cold-, water stress-, and other abiotic stress-induced genes, which are up-regulated rapidly in response to lead treatment. The mRNA levels of MT increased substantially after lead treatment indicating a potential role for it under lead stress in Sesbania. The present results show that SSH can serve as an effective tool for isolating genes induced in response to lead heavy metal tolerance in Sesbania. A better understanding of lead induced gene expression in Sesbania should help select candidates associated with remediation of heavy metal toxicity. The possible link between this result and the heavy-metal response of plants is discussed.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge