Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2000-Nov

Impact of post-anoxia stress on membrane lipids of anoxia-pretreated potato cells. A re-appraisal.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
D Pavelic
S Arpagaus
A Rawyler
R Brändle

키워드

요약

The importance of lipid peroxidation and its contributing pathways (via reactive oxygen species and lipoxygenase) during post-anoxia was evaluated with respect to the biphasic behavior of membrane lipids under anoxia (A. Rawyler, D. Pavelic, C. Gianinazzi, J. Oberson, R. Brändle [1999] Plant Physiol 120: 293-300), using potato (Solanum tuberosum cv Bintje) cell cultures. When anoxic cells in the pre-lytic phase were re-oxygenated for 2 h, superoxide anion was not detectable, the hydrogen peroxide (H(2)O(2)) level remained small and similar to that of controls, and cell viability was preserved. Lipids were intact and no lipid hydroperoxides were detected. However, small amounts of lipid hydroperoxides accumulated upon feeding anoxic cells with H(2)O(2) and incubation for an additional 2 h under anoxia. When cells that entered the lytic phase of anoxia were re-oxygenated for 2 h, the H(2)O(2) and superoxide anion levels were essentially unchanged. However, cell respiration decreased, reflecting the extensive lipid hydrolysis that had already started under anoxia and continued during post-anoxia. Simultaneous with the massive release of free polyunsaturated fatty acids, small amounts of lipid hydroperoxides were formed, reaching 1% to 2% of total fatty acids. Catalase and superoxide dismutase activities were not greatly affected, whereas the amount and activity of lipoxygenase tended to increase during anoxia. Lipid peroxidation in potato cells is therefore low during post-anoxia. It is mainly due to lipoxygenase, whereas the contribution of reactive oxygen species is negligible. But above all, it is a late event that occurs only when irreversible damage is already caused by the anoxia-triggered lipid hydrolysis.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge