Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Neuropathologica 1983

Influence of systemic factors on experimental epileptic brain injury. Structural changes accompanying bicuculline-induced seizures in rats following manipulations of tissue oxygenation or alpha-tocopherol levels.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
B Söderfeldt
G Blennow
H Kalimo
Y Olsson
B K Siesjö

키워드

요약

A previous study from the laboratory showed that status epilepticus induced by bicuculline administration to ventilated rats produced astrocytic swelling and nerve cell changes ("type 1 and 2 injury") particularly in layers 3 and 5 of the neocortex (Söderfeldt et al. 1981). The type 1 injured neurons were characterized by condensation of cyto- and karyoplasm and the less common type 2 cells were characterized by swelling of endoplasmic reticulum including the nuclear envelope. In the present study we explored whether changes in cerebral oxygen availability altered the extent or character of the cellular alterations. Animals with 2 h of status epilepticus were made either hyperoxic (administration of 100% O2), hypoxic (arterial pO2 50 mm Hg) or hypotensive (arterial blood pressure of either 70-75 or 50 mm Hg). Furthermore, we explored whether "oxidative" damage occurred by manipulating tissue levels of alpha-tocopherol, a known free radical scavenger. Non-epileptic control animals exposed to comparable degrees of hypoxia or hypotension showed no or minimal structural alterations. In the epileptic animals the results were as follows. Hyperoxia did not change the quality or extent of the structural alterations previously observed in normoxic epileptic animals. Neither administration nor deficiency of vitamin E did modify this pattern of alterations. In hypoxia the extent of cell damage was the same or somewhat larger than in normoxic, epileptic animals. In addition, neurons often showed cytoplasmic microvacuoles due to swelling of mitochondria. The hypoxic animals also showed swelling of astrocytic nuclei with clumped chromatin. Changes similar to those observed in hypoxic animals also appeared in moderate hypotension (mean arterial blood pressure 50 mm Hg), whereas mild hypotension (70-75 mm Hg) did not change the character of the tissue injury from that seen in hyperoxic or normoxic epileptic rats. The present results demonstrate that the neuronal cell damage that can be observed when the brain is fixed by perfusion after status epilepticus of 2 h duration is not exaggerated by hyperoxia or vitamin E deficiency nor is it ameliorated by a moderate restriction in cerebral oxygen supply or by vitamin E administration. If anything, hypoxia (or moderate hypotension) appears to increase the extent of damage and it clearly alters its ultrastructural characteristics. However, although the results fail to support the notion that epileptic cell damage is "oxidative", definite conclusions must await information on the cell damage that remains upon arrest of the epileptic activity.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge