Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Cancer 1987-Jun

Inhibition of mannose incorporation into glycoproteins and dolichol-linked intermediates of Sarcoma 180 cells by 6-methylmercaptopurine ribonucleoside.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
J A Sokoloski
A C Sartorelli

키워드

요약

6-Methylmercaptopurine ribonucleoside (6-MMPR), an inhibitor of purine nucleotide biosynthesis de novo, was used as a model compound to evaluate the relationship between the levels of intracellular guanosine triphosphate (GTP) and the formation of cellular glycoproteins and their dolichol-oligosaccharide precursors in Sarcoma 180 cells. Previous studies using the purine antimetabolite, 6-thioguanine (6-TG), demonstrated a relationship between the drug-induced decrease in GTP levels and the incorporation of radiolabelled mannose and fucose into cellular glycoproteins; estimation of the importance of these cell-surface alterations to the cytotoxicity produced by this agent was complicated by the incorporation of 6-TG nucleotides into cellular DNA and RNA. In this report, evidence is presented to show that the toxicity of 6-MMPR to Sarcoma 180 cells is associated with the effects of this agent on the intracellular pools of purine nucleotides. GTP functions in part in the activation of the sugar mannose, a step necessary for the biosynthesis of glycoproteins from nucleotide sugar precursors. Thus, 6-MMPR, which blocks the de novo pathway of purine nucleotide biosynthesis, caused a pronounced decrease in the intracellular pools of GTP in Sarcoma 180 cells; this phenomenon was accompanied by a marked reduction in the incorporation of radiolabelled mannose into cellular glycoproteins and their dolichol-linked oligosaccharide precursors. In contrast, the incorporation of glucosamine, a sugar not metabolically activated by GTP, into glycoproteins, and of leucine into protein, were depressed only after prolonged incubation with either 6-MMPR or 6-TG. Adenine restored purine nucleotide pools depleted by 6-MMPR and partially prevented both the reduction in mannose incorporation into glycoprotein and the cytotoxic effects of this antimetabolite. Guanosine partially reversed the effects of 6-MMPR on intracellular GTP pools and mannose incorporation but not the depression of ATP pools produced by this anti-metabolite. However, guanosine did not reverse the cytotoxicity of 6-MMPR but instead enhanced its toxicity. The findings are consistent with the possibility of membrane changes being involved in the cytotoxicity of 6-MMPR, but clearly other factors are involved as well.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge