Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2010-Jul

Interference with oxidative phosphorylation enhances anoxic expression of rice alpha-amylase genes through abolishing sugar regulation.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Minji Park
Hui-Kyeong Yim
Hyeok-Gon Park
Jun Lim
Soo-Hwan Kim
Yong-Sic Hwang

키워드

요약

Rice has the unique ability to express alpha-amylase under anoxic conditions, a feature that is critical for successful anaerobic germination and growth. Previously, anaerobic conditions were shown to up-regulate the expression of Amy3 subfamily genes (Amy3B/C, 3D, and 3E) in rice embryos. These genes are known to be feedback regulated by the hydrolytic products of starchy endosperm such as the simple sugar glucose. It was found that oxygen deficiency interferes with the repression of Amy3D gene expression imposed by low concentrations of glucose but not with that imposed by higher amounts. This differential anoxic de-repression depending on sugar concentration suggests the presence of two distinct pathways for sugar regulation of Amy3D gene expression. Anoxic de-repression can be mimicked by treating rice embryos with inhibitors of ATP synthesis during respiration. Other sugar-regulated rice alpha-amylase genes, Amy3B/C and 3E, behave similarly to Amy3D. Treatment with a respiratory inhibitor or anoxia also relieved the sugar repression of the rice CIPK15 gene, a main upstream positive regulator of SnRK1A that is critical for Amy3D expression in response to sugar starvation. SnRK1A accumulation was previously shown to be required for MYBS1 expression, which transactivates Amy3D by binding to a cis-acting element found in the proximal region of all Amy3 subfamily gene promoters (the TA box). Taken together, these results suggest that prevention of oxidative phosphorylation by oxygen deficiency interferes with the sugar repression of Amy3 subfamily gene expression, leading to their enhanced expression in rice embryos during anaerobic germination.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge