Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Medicine 2018-Nov

Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Shin Young Kim
Cheng-Yun Jin
Cheol Hong Kim
Young Hyun Yoo
Sung Hyun Choi
Gi-Young Kim
Hyun Min Yoon
Hwan Tae Park
Yung Hyun Choi

키워드

요약

Isorhamnetin, which is a flavonoid predominantly found in fruits and leaves of various plants, including Hippophae rhamnoides L. and Oenanthe javanica (Blume) DC, is known to possess various pharmacological effects. However, the anti‑inflammatory potential of isorhamnetin remains poorly studied. Therefore, the present study aimed to investigate the inhibitory potential of isorhamnetin against inflammatory responses in lipopolysaccharide (LPS)‑stimulated BV2 microglia. To measure the effects of isorhamnetin on inflammatory mediators and cytokines, and reactive oxygen species (ROS) generation, the following methods were used: cell viability assay, griess assay, ELISA, reverse transcriptase‑polymerase chain reaction, flow cytometry, western blotting and immunofluorescence staining. The results revealed that isorhamnetin significantly suppressed LPS‑induced secretion of pro‑inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, without exhibiting significant cytotoxicity. Consistent with these results, isorhamnetin inhibited LPS‑stimulated expression of regulatory enzymes, including inducible NO synthase and cyclooxygenase‑2 in BV2 cells. Isorhamnetin also downregulated LPS‑induced production and expression of pro‑inflammatory cytokines, such as tumor necrosis factor‑α and interleukin‑1β. The mechanism underlying the anti‑inflammatory effects of isorhamnetin was subsequently evaluated; this flavonoid inhibited the nuclear factor (NF)‑κB signaling pathway by disrupting degradation and phosphorylation of inhibitor κB‑α in the cytoplasm and blocking translocation of NF‑κB p65 into the nucleus. In addition, isorhamnetin effectively suppressed LPS‑induced expression of Toll‑like receptor 4 (TLR4) and myeloid differentiation factor 88. It also suppressed the binding of LPS with TLR4 in BV2 cells. Furthermore, isorhamnetin markedly reduced LPS‑induced generation of ROS in BV2 cells, thus indicating a strong antioxidative effect. Collectively, these results suggested that isorhamnetin may suppress LPS‑mediated inflammatory action in BV2 microglia through inactivating the NF‑κB signaling pathway, antagonizing TLR4 and eliminating ROS accumulation. Further studies are required to fully understand the anti‑inflammatory effects associated with the antioxidant capacity of isorhamnetin; however, the findings of the present study suggested that isorhamnetin may have potential benefits in inhibiting the onset and treatment of neuroinflammatory diseases.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge