Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genes 2018-Jun

LTBSG1, a New Allele of BRD2, Regulates Panicle and Grain Development in Rice by Brassinosteroid Biosynthetic Pathway.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ran Qin
Dongdong Zeng
Chengcong Yang
Delara Akhter
Md Alamin
Xiaoli Jin
Chunhai Shi

키워드

요약

Panicle architecture and grain size are two important agronomic traits which determine grain yield directly in rice. In the present study, a mutant named ltbsg1 (longer top branch and shorter grain 1) was isolated from the cultivar “Zhenong 34” (Oryza sativa L. ssp. indica) by ethyl methane sulfonate (EMS) mutagenesis. The target gene was studied through phenotype observation, genetic analysis, map-based cloning and functional analysis. The histocytological analysis indicated that the elongated top branch and shorter grain of mutant ltbsg1 were caused from the defects of cell elongation. The ltbsg1 gene in mutant revealed a single nucleotide substitution (G-A) in the exon 2 of LOC_Os10g25780, causing an amino acid variation (Glycine-Arginine) in the FAD (Flavin-adenine dinucleotide)-binding domain of delta (24)-sterol reductase, which was involved in the brassinosteroid (BR) biosynthesis. LTBSG1 was constitutively expressed and the protein was widely localized in chloroplast, nucleus and cytomembrane. The ltbsg1 seedlings had a lower endogenous BR level and could be restored to the phenotype of wild type by exogenous BR. The LTBSG1 knock-out lines showed similar phenotype defects as mutant ltbsg1, which confirmed that LTBSG1 was responsible for top branch elongation and grain size reduction. Furthermore, LTBSG1 along with other BR-related genes were feedback-regulated due to their obvious altered expression in mutant ltbsg1. This study demonstrated that LTBSG1 could play a new role in regulating panicle and grain development by BR biosynthetic pathway.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge