Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2014-Aug

Location-Specific Fungicide Resistance Profiles and Evidence for Stepwise Accumulation of Resistance in Botrytis cinerea.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Xingpeng Li
Dolores Fernández-Ortuño
Shuning Chen
Anja Grabke
Chao-Xi Luo
William Bridges
Guido Schnabel

키워드

요약

The fungicide resistance profiles to seven chemical classes of fungicides were investigated in 198 Botrytis cinerea isolates from five blackberry fields and 214 B. cinerea isolates from 10 strawberry fields of North and South Carolina. Populations of B. cinerea tended to have a single dominant, location-specific resistance profile that consisted of resistance to multiple fungicides in fields sprayed weekly with site-specific fungicides. The most prevalent profile in blackberry fields consisted of resistance to thiophanate-methyl, pyraclostrobin, and boscalid. The most prevalent resistance profile found in conventional strawberry fields consisted of resistance to thiophanate-methyl, pyraclostrobin, boscalid, and cyprodinil. A statistical model revealed that multifungicide resistance patterns did not evolve randomly in populations from both crops. Instead, strains resistant to thiophanate-methyl were more likely to acquire resistance to pyraclostrobin, the resulting dual-resistant population was more likely to acquire resistance to boscalid, the resulting triple-resistant population was more likely to acquire resistance to cyprodinil, and the resulting quadruple-resistant population was more likely to acquire resistance to fenhexamid (strawberry population only) compared with random chance. Resistance to iprodione and fludioxonil evolved from a pool of strains with different fungicide resistance profiles. Resistance to thiophanate-methyl, pyraclostrobin, boscalid, and fenhexamid in blackberry isolates was, without exception, based on target gene mutations, including E198A and E198V in β-tubulin, G143A in cytochrome b, H272Y and H272R in SdhB, and F412I in Erg27, respectively. A new genotype associated with fenhexamid resistance was found in one strain (i.e., Y408H and deletion of P298). Fungicide-resistant strains were present but rare in an unsprayed blackberry field, where some unique phenotypes, including low and medium resistance to fludioxonil, had emerged in the absence of fungicide pressure. The isolates resistant to fludioxonil had effective dose that inhibited 50% of mycelial growth values of 0.16 μg/ml (low resistance) and 0.32 and 0.38 μg/ml (medium resistance) and were also resistant to the anilinopyrimidine fungicide cyprodinil, indicating that this and similar phenotypes will eventually be selected by continued applications of the fludioxonil + cyprodinil premixture Switch. This study shows that multifungicide-resistant phenotypes are common in conventionally maintained strawberry and blackberry fields and that resistance to multiple fungicides evolved from stepwise accumulation of single resistances.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge