Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Medicine 2009-May

Mechanism of HMGB1 release inhibition from RAW264.7 cells by oleanolic acid in Prunus mume Sieb. et Zucc.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Ko-Ichi Kawahara
Teruto Hashiguchi
Kazuo Masuda
Abbi R Saniabadi
Kiyoshi Kikuchi
Salunya Tancharoen
Takashi Ito
Naoki Miura
Yoko Morimoto
Kamal K Biswas

키워드

요약

High mobility group box-1 protein (HMGB1), primarily from the nucleus, is released into the extracellular milieu either passively from necrotic cells or actively through secretion by monocytes/macrophages. Extracellular HMGB1 acts as a potent inflammatory agent by promoting the release of cytokines such as tumor necrosis factor (TNF)-alpha, has procoagulant activity, and is involved in death due to sepsis. Accordingly, HMGB1 is an appropriate therapeutic target. In this study, we found that an extract of Prunus mume Sieb. et Zucc. (Ume) fruit (Ume extract), an abundant source of triterpenoids, strongly inhibited HMGB1 release from lipopolysaccharide (LPS)-stimulated macrophage-like RAW264.7 cells. The inhibitory effect on HMGB1 release was enhanced by authentic oleanolic acid (OA), a naturally occurring triterpenoid. Similarly, the HMGB1 release inhibitor in Ume extract was found to be OA. Regarding the mechanisms of the inhibition of HMGB1 release, the OA or Ume extract was found to activate the transcription factor Nrf2, which binds to the antioxidative responsive element, and subsequently the heme oxygenase (HO)-1 protein was induced, indicating that the inhibition of HMGB1 release from LPS-stimulated RAW264.7 cells was mediated via the Nrf2/HO-1 system; an essentially antioxidant effect. These results suggested that natural sources of triterpenoids warrant further evaluation as 'rescue' therapeutics for sepsis and other potentially fatal systemic inflammatory disorders.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge