Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 1999-Oct

Modification of luciferase to be a substrate for plant aspartic proteinase.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
W J Amidon
J E Pfeil
S Gal

키워드

요약

The possibility of using firefly luciferase as a substrate for an aspartic proteinase was explored. Several amino acid modifications to the C-terminus of the luciferase were created on the basis of the known substrate of the Arabidopsis thaliana aspartic proteinase, pro-(barley lectin). One luciferase with the sequence Arg-Asp-Gly-Val-Phe-Ala-Ala instead of the native Arg-Glu-Ile-Leu-Ile-Lys-Ala at position -15 to -9 relative to the C-terminus of native luciferase was found to possess 17% of the original luciferase activity. When this modified luciferase was incubated with the aspartic proteinase, a specific loss in activity occurred that was not observed with the original luciferase. However, both enzymes seemed very sensitive to the acidic conditions required for aspartic proteinase activity. The other versions of luciferase with different numbers of pro-(barley lectin) amino acids were not active luciferases. This provided information on the structural requirements of the C-terminal portion of the protein for luciferase activity. The luciferase proteins were also monitored during the digestion by using Western blots and some were shown to be substrates for the aspartic proteinase. Contrary to what had been expected, the modified luciferase that incorporated the pro-(barley lectin) sequences was not simply cleaved at the engineered site but at additional positions in the protein. The Arabidopsis aspartic proteinase cleaved two other standard protein substrates at many sites, suggesting that this proteinase could have a role in the degradation of proteins in addition to processing propeptides in plants.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge