Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacognosy Magazine 2014-Apr

Molecular docking studies of flavonoids for their inhibition pattern against β-catenin and pharmacophore model generation from experimentally known flavonoids to fabricate more potent inhibitors for Wnt signaling pathway.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Hira Iftikhar
Sajid Rashid

키워드

요약

BACKGROUND

Canonical Wnt signaling plays a key role in tumor cell proliferation, which correlates with the accumulation of β-catenin in cell due to inactivation of glycogen synthetase kinase-3 β. However, uncontrolled expression of β-catenin leads to fibromatosis, sarcoma and mesenchymal tumor formation. Recently, a number of polyphenolic compounds of naturally occurring flavonoid family have been screened for the inhibition of Wnt signaling.

OBJECTIVE

Elucidation of the binding mode of inhibitors to β-catenin, reporting more potent inhibitors for the disease-causing protein and designing a pharmacophore model based on naturally occurring compounds, flavonoids.

METHODS

In this study, a comparative molecular docking analysis was performed to elucidate the binding mode of experimentally reported and unknown inhibitors. Based on the knowledge of geometry, binding affinity and drug score, we described a subset of novel inhibitors.

RESULTS

The binding energy of known inhibitors (isorhamnetin, fisetin, genistein and silibinin) was observed in a range of -5.68 to -4.98 kcal/mol, while novel inhibitors (catechin, luteolin, coumestrol and β-naphthoflavone) exhibited -6.50 to -5.22 kcal/mol. We observed good placement and strong interactions of selected compounds inside the binding pocket of β-catenin. Moreover, flavonoid family members and T cell factors 4 (TCF4) compete for β-catenin binding by sharing common binding residues.

CONCLUSIONS

This study will largely help in understanding the molecular basis of β-catenin/TCF4 inhibition through flavonoids by exploring their structural details. Finally, the novel inhibitors proposed in this study need further attention to uncover cancer treatment and with the generated pharmacophore model, more and potent β-catenin inhibitors can be easily screened.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge