Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology and Applied Biochemistry 1999-Jun

Multiprobe fluorescence imaging and microspectrofluorimetry of cell transformation and differentiation: implications in terms of applied biochemistry and biotechnology.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
E Kohen
S Gatt
A Schachtschabel
D O Schachtschabel
C Kohen
V Agmon
J G Hirschberg
M Monti
F Roisen

키워드

요약

The dichotomy of cellular transformation versus differentiation does not preclude the hypothesis of a unified underlying mechanism that can switch either way as a result of growth factors, cell-membrane receptors, secondary messengers, integrating switch kinases and/or nuclear receptors. Its study for biopharmaceutical and biotechnological applications requires a methodology capable of dealing with such pleiotropy. In the multiprobe-multiparameter approach, one must remain wary of cumulative toxic effects and misinterpretations. 'Smart' instrumentation does not mean 'smart' probes. It turns out that the cell's own endogenous probes, the fluorescent coenzymes, may be akin to 'smart' probes, open to study in situ of many-fold interrelated pathways in cell energetics and dynamics. Resolution at the micro- and even nano-compartment levels is not altogether impossible. Thus an innovative search in terms of what may be called 'intracellular reconnaissance with fluorescent probes and biopharmaceuticals' necessitates recourse to multiple tentative probings along the pleiotropic mechanisms as far in resolution as one can go. Among the characteristic findings using this approach are: (i) morphometric alterations in the mitochondria and melanosomes of melanoma cells treated with azelaic acid; (ii) deregulation of mitochondrial control and extramitochondrial metabolism in similarly treated cells; (iii) considerable acceleration of NAD(P) transient kinetics in atractylate-treated L sarcoma cells; (iv) alterations of mitochondria and Golgi in fusion-deficient myoblasts; (v) tentative recognition of beta-glucosidase deficiency in Gaucher disease cells by the use of fluorescent and fluorogenic lysosomal probes; and (vi) UVA-induced accumulation of Schiff bases (a kind of accelerated photo-aging) in yeast and kidney epithelial cells. Because these studies utilize probing at whatever points along the concerned pathways become accessible, at first glance they may look disconnected. What and where is the connecting thread, for instance, between studying melanoma metabolism, melanosome morphometry, hepatocyte organelle morphogenesis and transformation, myotube organelle morphogenesis and fusion-non-fusion, and lysosomal activity in gene-deficient cells? In the mapping of the regulatory and deregulatory mechanisms involved in the switching of differentiation or transformation, each of the above topics carries an information content towards resolution of the pleiotropic puzzle. The integration of such information with increasing resolution and access to intracellular microdomains may ultimately allow focus on the precise target, the switch from differentiation to transformation or vice versa.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge