Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Menopause 2015-Nov

Neoflavonoid dalbergiphenol from heartwood of Dalbergia sissoo acts as bone savior in an estrogen withdrawal model for osteoporosis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Jyoti Gautam
Padam Kumar
Priyanka Kushwaha
Vikram Khedgikar
Dharmendra Choudhary
Divya Singh
Rakesh Maurya
Ritu Trivedi

키워드

요약

OBJECTIVE

Dalbergiphenol (DGP) is a neoflavonoid isolated from heartwood of Dalbergia sissoo. Effects of DGP on skeletal health remain to be elucidated. The objective of the present study was to investigate the biological effects of DGP on bone loss in ovariectomized mice.

METHODS

Adult BALB/c mice were ovariectomized and administered DGP (1 and 5 mg/kg/d) or 17β-estradiol (E2) orally for 6 weeks. The sham group and the ovariectomy (OVX) + vehicle group served as controls. Eight female BALB/c mice were taken for each group. Uterine estrogenicity, bone microarchitecture, biomechanical strength, new bone formation (based on bone formation rate and mineral apposition rate), and skeletal expression of osteogenic and resorptive gene markers were studied.

RESULTS

OVX resulted in a marked increase in body weight and a decrease in femoral and vertebral trabecular bone volume that were prevented by DGP or E2 treatment. DGP treatment increased bone biomechanical strength and new bone formation rate in ovariectomized mice, comparable with E2 treatment. However, increase in uterine weight and estrogenicity were observed in E2-treated ovariectomized mice, but not in response to DGP treatment. Treatment with DGP increased messenger RNA expression of runt-related transcription factor 2, osterix, and collagen type I, and decreased messenger RNA expression of tartrate-resistant acid phosphatase and the osteoprotegerin-to-receptor activator of nuclear factor-κB ligand ratio in the femur of ovariectomized mice.

CONCLUSIONS

Overall findings suggest that DGP treatment can effectively prevent OVX-induced increase in bone loss and decrease in bone strength possibly by increasing osteoblastic activities and by decreasing osteoclastic activities.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge