Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Stroke 2001-Jul

Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
T Goyagi
S Goto
A Bhardwaj
V L Dawson
P D Hurn
J R Kirsch

키워드

요약

OBJECTIVE

The potent final sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) provides neuroprotection in experimental stroke. We tested the hypothesis that PPBP attenuates striatal tissue damage after middle cerebral artery occlusion (MCAO) by a mechanism involving reduction of ischemia-evoked nitric oxide (NO) production. Furthermore, we determined whether the agent fails to protect ischemic brain when neuronal nitric oxide synthase (nNOS) is genetically deleted or pharmacologically inhibited (selective nNOS inhibitor, 7-nitroindazole [7-NI]).

METHODS

Halothane-anesthetized adult male Wistar rats were subjected to 2 hours of MCAO by the intraluminal filament occlusion technique. All physiological variables were controlled during the ischemic insult. In vivo striatal NO production was estimated via microdialysis by quantification of local, labeled citrulline recovery after labeled arginine infusion. In a second series of experiments, nNOS null mutants (nNOSKOs) and the genetically matched wild-type (WT) strain were treated with 90 minutes of MCAO. Brains were harvested at 22 hours of reperfusion for measurement of infarction volume by triphenyltetrazolium chloride histology.

RESULTS

PPBP attenuated infarction volume at 22 hours of reperfusion in cerebral cortex and striatum and markedly attenuated NO production in ischemic and nonischemic striatum during occlusion and early reperfusion. Treatment with 7-NI mimicked the effects of PPBP. In WT mice, infarction volume was robustly decreased by both PPBP and 7-NI, but the efficacy of PPBP was not altered by pharmacological nNOS inhibition in combined therapy. In contrast, PPBP did not decrease infarction volume in nNOSKO mice.

CONCLUSIONS

These data suggest that the mechanism of neuroprotection of PPBP in vivo is through attenuation of nNOS activity and ischemia-evoked NO production. Neuroprotective effects of PPBP are lost when nNOS is not present or is inhibited; therefore, PPBP likely acts upstream from NO generation and its subsequent neurotoxicity.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge