Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2017-Jan

Neuroprotective effects of 2,3,5,4'-tetrahydoxystilbene-2-O-β-D-glucoside from Polygonum multiflorum against glutamate-induced oxidative toxicity in HT22 cells.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Sun Young Lee
Sung Min Ahn
Ziyu Wang
Young Whan Choi
Hwa Kyoung Shin
Byung Tae Choi

키워드

요약

BACKGROUND

Since ancient times, Polygonum multiflorum Thunb. has been used to treat premature grey hair, dizziness, and blurred vision in East Asia. A major bioactive constituent of this medicinal herb, 2,3,5,4'-tetrahydoxystilbene-2-O-β-D-glucoside (THSG), has antioxidant activity and exerts beneficial effects on cognition and memory.

OBJECTIVE

The purpose of the current study was to determine if THSG affects hippocampal neuronal cell death and mitochondrial function following exposure to oxidative stress.

METHODS

HT22 hippocampal cells with or without THSG pretreatment were exposed to glutamate, and the effects on cell viability and expression of molecules related to apoptotic cell death were examined using biochemical techniques, flow cytometry, western immunoblotting, and real-time polymerase chain reaction.

RESULTS

Pretreatment with THSG significantly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase as well as apoptotic cell death. THSG inhibited generation of reactive oxygen species (ROS), expression of heme oxygenase-1, and activation of caspase-3 and calpain-1 proteases, all of which were increased by glutamate. THSG inhibited glutamate-induced disruption of mitochondrial membrane potential (MMP) and voltage-dependent anion channel-1. It also regulated the ratio of Bax to Bcl-2.

CONCLUSIONS

These results indicate that THSG has a marked neuroprotective effect against glutamate-induced hippocampal damage by decreasing ROS production and stabilizing MMP. These findings suggest the potential of THSG as a new therapeutic agent for the treatment of cognitive disorders.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge