Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurological Research 2019-May

Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Mehdi Goudarzi
Mohammad Mombeini
Iman Fatemi
Azadeh Aminzadeh
Heibatullah Kalantari
Ali Nesari
Hossein Najafzadehvarzi
Saeed Mehrzadi

키워드

요약

Acrylamide (ACR) is an environmental contaminant and a well-known neurotoxin. Ellagic acid (EA), a natural plant polyphenol, has shown a variety of beneficial effects. The present study was designed to explore whether EA could attenuate ACR-induced neurotoxicity in rats and to explore the underlying mechanisms. Animals were divided into five groups. Group 1 was treated with normal saline (2 mL/kg) for 30 days. Group 2 was treated with ACR (20 mg/kg, orally) for 30 days. Groups 3 and 4 were treated with ACR and EA (10 and 30 mg/kg, orally) for 30 days. Group 5 was treated with EA (30 mg/kg, orally) for 30 days. Open field, rotarod and passive avoidance test were conducted to evaluate behavioral changes, respectively. The brain cortex was used for histological examination. Different oxidative parameters and inflammatory biomarkers were assessed in the brain cortex. ACR-administered rats showed a considerable impairment in exploratory behavior, motor performance as well as cognition. Our data also showed that ACR administration significantly increases malondialdehyde, nitric oxide, interleukin-1β and tumor necrosis factor-α levels. Moreover, it decreases brain glutathione level, superoxide dismutase, glutathione peroxidase, catalase activity. Co-administration of EA (especially 30 mg/kg, p.o.) prevented these changes; however, it did not affect the glutathione peroxidase activity. These results were supported by histopathological observations of the brain. Our results suggest that EA can be useful for protecting brain tissue against ACR-induced neurotoxicity through ameliorative effects on inflammatory indices and oxidative stress parameters.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge